Rational zeta series

In mathematics, a rational zeta series is the representation of an arbitrary real number in terms of a series consisting of rational numbers and the Riemann zeta function or the Hurwitz zeta function. Specifically, given a real number x, the rational zeta series for x is given by

where each qn is a rational number, the value m is held fixed, and ζ(sm) is the Hurwitz zeta function. It is not hard to show that any real number x can be expanded in this way.

Elementary series

For integer m>1, one has

For m=2, a number of interesting numbers have a simple expression as rational zeta series:

and

where γ is the Euler–Mascheroni constant. The series

follows by summing the Gauss–Kuzmin distribution. There are also series for π:

and

being notable because of its fast convergence. This last series follows from the general identity

which in turn follows from the generating function for the Bernoulli numbers

Adamchik and Srivastava give a similar series

A number of additional relationships can be derived from the Taylor series for the polygamma function at z = 1, which is

.

The above converges for |z| < 1. A special case is

which holds for |t| < 2. Here, ψ is the digamma function and ψ(m) is the polygamma function. Many series involving the binomial coefficient may be derived:

where ν is a complex number. The above follows from the series expansion for the Hurwitz zeta

taken at y = −1. Similar series may be obtained by simple algebra:

and

and

and

For integer n ≥ 0, the series

can be written as the finite sum

The above follows from the simple recursion relation Sn + Sn + 1 = ζ(n + 2). Next, the series

may be written as

for integer n ≥ 1. The above follows from the identity Tn + Tn + 1 = Sn. This process may be applied recursively to obtain finite series for general expressions of the form

for positive integers m.

Half-integer power series

Similar series may be obtained by exploring the Hurwitz zeta function at half-integer values. Thus, for example, one has

Expressions in the form of p-series

Adamchik and Srivastava give

and

where are the Bernoulli numbers and are the Stirling numbers of the second kind.

Other series

Other constants that have notable rational zeta series are:

References

  • Jonathan M. Borwein, David M. Bradley, Richard E. Crandall (2000). "Computational Strategies for the Riemann Zeta Function" (PDF). J. Comput. Appl. Math. 121 (1–2): 247–296. Bibcode:2000JCoAM.121..247B. doi:10.1016/s0377-0427(00)00336-8.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • Victor S. Adamchik and H. M. Srivastava (1998). "Some series of the zeta and related functions" (PDF). Analysis. 18 (2): 131–144. CiteSeerX 10.1.1.127.9800. doi:10.1524/anly.1998.18.2.131. S2CID 11370668.

Read other articles:

Stabilimento Alfa Romeo di Pomigliano d'ArcoVista aerea dello stabilimento Alfa Romeo di Pomigliano d'ArcoLocalizzazioneStato Italia RegioneCampania LocalitàPomigliano d'Arco IndirizzoVia Ex Aeroporto Coordinate40°55′36.32″N 14°24′04.6″E / 40.926756°N 14.401279°E40.926756; 14.401279Coordinate: 40°55′36.32″N 14°24′04.6″E / 40.926756°N 14.401279°E40.926756; 14.401279 Informazioni generaliCondizioniin uso Inaugurazione1972 Usostabilim...

 

Apriona japonica Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Genus: Apriona Spesies: Apriona japonica Apriona japonica adalah spesies kumbang tanduk panjang yang tergolong famili Cerambycidae. Spesies ini juga merupakan bagian dari genus Apriona, ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada batang kayu hidup atau ka...

 

Wilayah bencana kelaparan pada musim gugur 1921. Bencana kelaparan Rusia 1921, juga dikenal dengan sebutan bencana kelaparan Povolzhye, adalah sebuah bencana kelaparan yang terjadi di Bolshevik Rusia yang dimulai pada awal musim semi 1921 dan berakhir pada 1922. Bencana kelaparan tersebut menewaskan sekitar 6 juta orang, yang utamanya berdampak pada wilayah Volga dan Sungai Ural.[1][2][3] Referensi ^ Marxist Dreams and Soviet Realities, Marxist Dreams and Soviet Realit...

شايلرفيل   الإحداثيات 43°06′03″N 73°34′53″W / 43.1008°N 73.5814°W / 43.1008; -73.5814   [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة ساراتوغا  خصائص جغرافية  المساحة 1.521404 كيلومتر مربع1.521405 كيلومتر مربع (1 أبريل 2010)  ارتفاع 39 متر  عدد الس...

 

Serpong EkspresKRL Serpong Ekspres dan Ekonomi di Stasiun SerpongIkhtisarJenisKereta komuterSistemCommuter LineStatusTidak BeroperasiLokasiDKI Jakarta (Jakarta Pusat dan Jakarta Selatan)Banten (Kabupaten Tangerang dan kota Tangerang Selatan)TerminusStasiun Tanah AbangStasiun SerpongStasiun8Layanan4OperasiDibuka1992Ditutup2011PemilikPT Perusahaan Umum Kereta Api (Persero)OperatorKAI CommuterDepoSerpongData teknisPanjang lintas24,6 km (15 mi 502 yd 2 ft 8 in)Lebar sepur...

 

Municipality of Slovakia Chapel of the Transfiguration of the Lord Geča (Hungarian: Hernádgecse) is a village and municipality in Košice-okolie District in the Kosice Region of eastern Slovakia. As of 2022, it has a population of about 1862 people.[1] History In historical records the village was first mentioned in 1255.[2] Geography The village lies at an altitude of 185 metres and covers an area of 5.481 km2.[2] Genealogical resources The records for genealog...

تشيب كيل معلومات شخصية الميلاد 10 مارس 1949 (75 سنة)  أتلانتا  مواطنة الولايات المتحدة  الحياة العملية المدرسة الأم جامعة تينيسي  المهنة لاعب كرة قدم كندية  الرياضة كرة القدم الكندية  تعديل مصدري - تعديل   تشيب كيل (بالإنجليزية: Chip Kell)‏ هو لاعب كرة قدم كندية أمر�...

 

1920–1991 ruling party of Armenia This article is about the ruling Communist Party of Armenia during the Soviet era. For the post-Soviet Union communist party in the Republic of Armenia established in 1991, see Armenian Communist Party. Communist Party of Armenia Հայաստանի կոմունիստական կուսակցությունFirst SecretaryAram G. Sargsyan (last)Founded31 December 1920Dissolved7 September 1991Split fromUnion of Armenian Social DemocratsSucceeded byDemoc...

 

Julian Ryerson Informasi pribadiNama lengkap Julian RyersonTanggal lahir 17 November 1997 (umur 26)Tempat lahir Lyngdal, NorwayTinggi 1,83 m (6 ft 0 in)Posisi bermain Full-back / MidfielderInformasi klubKlub saat ini BVBNomor 26Karier junior–2013 Lyngdal IL2013–2015 VikingKarier senior*Tahun Tim Tampil (Gol)2015–2018 Viking 63 (7)2018–2023 Union Berlin 36 (0)2023– BVB 7 (1)Tim nasional‡2015 Norway U-18 12 (0)2016 Norway U-19 3 (0)2017–2018 Norway U-21 13 (1)...

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

 

British Permanent Under-Secretary for Foreign Affairs (1938-1946) The Right HonourableSir Alexander CadoganOM GCMG KCBSir Alexander Cadogan in 1945.Permanent Under-Secretary of State for Foreign AffairsIn office1938–1946MonarchGeorge VIPreceded bySir Robert VansittartSucceeded bySir Orme Sargent Personal detailsBornAlexander Montagu George Cadogan(1884-11-25)25 November 1884London, England[1]Died9 July 1968(1968-07-09) (aged 83)Westminster, London, England[2]Spo...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Mamenori (まめのりcode: ja is deprecated ), atau kertas kedelai, juga disebut sebagai mame-nori-san (まめのりさんcode: ja is deprecated ), merupakan pembungkus tipis dari kedelai yang digunakan sebagai pengganti nori, dan dapat digunakan seba...

Frigate of the Royal Navy For other ships with the same name, see HMS Madagascar. The figurehead of HMS Madagascar History United Kingdom NameHMS Madagascar Ordered5 April 1817 BuilderEast India Company, Bombay Laid downOctober 1821 Launched15 November 1822 CompletedJanuary 1829 at Portsmouth Dockyard Motto– FateSold 5 May 1863 General characteristics Class and typeSeringapatam-class frigate Tons burthen1,162 bm Length159 ft (48 m) (gundeck) Beam40 ft 5 in (12.32 m)...

 

Holmium acetylacetonate Names Other names Holmium(III) acetylacetonate Identifiers CAS Number 14589-33-4 Y 3D model (JSmol) Interactive image InChI InChI=1S/3C5H7O2.Ho/c3*1-4(6)3-5(2)7;/h3*3H,1-2H3;/q3*-1;+3Key: UEKRGRZSLATUQV-UHFFFAOYSA-N SMILES CC(=O)[CH-]C(=O)C.CC(=O)[CH-]C(=O)C.CC(=O)[CH-]C(=O)C.[Ho+3] Properties Chemical formula C15H21HoO6 Molar mass 462.257 g·mol−1 Appearance yellow-pink[1] Solubility in water Insoluble Except where otherwise noted, dat...

 

بيتر ساغان معلومات شخصية الميلاد 26 يناير 1990 (العمر 34 سنة)جيلينا الطول 1.84 م (6 قدم 0 بوصة)* مركز اللعب ثاقب  [لغات أخرى]‏،  وعداء دراجات  [لغات أخرى]‏  الجنسية  سلوفاكيا الوزن 73 كـغ (161 رطل؛ 11.5 ستون) أخوة وأخوات جوراج ساغان  الحياة العملية ...

Questa voce sull'argomento ciclisti spagnoli è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Antonio Piedra Pérez Antonio Piedra all'Euskal Bizikleta 2008 Nazionalità  Spagna Altezza 178 cm Peso 61 kg Ciclismo Specialità Strada Termine carriera 2017 CarrieraSquadre di club 2005-2006Garcamps2007Fuerteventura2008-2011 Andalucía2012-2014 Caja Rural2016 Funvic2017 Manzana Postobón Statistiche aggiornate al febbraio 2019 M...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (يونيو 2020) وحدة تشكيل مستعمرة الصارية (اختصارًا CFU-Mast) هي وحدة تشكيل مستعمرة. ينشأ منها الخ�...

 

Banjir Sulawesi Selatan 2019Provinsi Sulawesi Selatan yang diberi warna merah pada peta IndonesiaTanggal22 Januari 2019Tewas79Cedera55Hilang1 Pada 22 Januari 2019, banjir yang disebabkan oleh hujan deras melanda Provinsi Sulawesi Selatan. Setidaknya 79 orang tewas dan ribuan lainnya harus mengungsi.[1] Kabupaten Gowa mengalami kerusakan yang paling parah. Sebagian besar korban tewas berasal dari wilayah ini. Banjir terparah disebabkan oleh meluapnya Sungai Jeneberang dan dibukanya pin...

Mamiliano di Palermovescovo della Chiesa cattolicaIncarichi ricopertiVescovo di Palermo  Natoa Palermo Deceduto15 settembre 460 a Montecristo   Manuale Mamiliano di Palermo (Palermo, ... – Montecristo, 15 settembre 460) è stato un vescovo italiano.San Mamiliano di PalermoSepolcro di San Mamiliano nel Duomo di Sovana Vescovo  NascitaPalermo MorteMontecristo, 15 settembre 460 Venerato daChiesa cattolica Ricorrenza15 settembre e 16 giugno Patrono diDiocesi di Pitigliano, I...

 

Ruslan Shostak Charitable FoundationБлагодійна організація Благодійний фонд «Руслана Шостака»FounderRuslan ShostakFounded atDnipro, UkraineTypeCharityVAT ID no. 44821459HeadquartersKyiv, UkraineLocationUkraineCEONatalia MasloWebsitehttps://rush.org.ua/en Ruslan Shostak Charitable Foundation is a Ukrainian charitable organization that specializes in helping the Ukrainian Defense Forces and those affected by the Russian-Ukrainian War. The orga...