Note: This is also equal to due to the definition of the digamma function: .
Series representation
Series formula
Euler's product formula for the gamma function, combined with the functional equation and an identity for the Euler–Mascheroni constant, yields the following expression for the digamma function, valid in the complex plane outside the negative integers (Abramowitz and Stegun 6.3.16):[1]
Equivalently,
Evaluation of sums of rational functions
The above identity can be used to evaluate sums of the form
where p(n) and q(n) are polynomials of n.
Performing partial fraction on un in the complex field, in the case when all roots of q(n) are simple roots,
For the series to converge,
otherwise the series will be greater than the harmonic series and thus diverge. Hence
and
With the series expansion of higher rank polygamma function a generalized formula can be given as
which converges for |z| < 1. Here, ζ(n) is the Riemann zeta function. This series is easily derived from the corresponding Taylor's series for the Hurwitz zeta function.
Series with Gregory's coefficients, Cauchy numbers and Bernoulli polynomials of the second kind
There exist various series for the digamma containing rational coefficients only for the rational arguments. In particular, the series with Gregory's coefficientsGn is
Actually, ψ is the only solution of the functional equation
that is monotonic on R+ and satisfies F(1) = −γ. This fact follows immediately from the uniqueness of the Γ function given its recurrence equation and convexity restriction. This implies the useful difference equation:
Some finite sums involving the digamma function
There are numerous finite summation formulas for the digamma function. Basic summation formulas, such as
are due to Gauss.[16][17] More complicated formulas, such as
are due to works of certain modern authors (see e.g. Appendix B in Blagouchine (2014)[18]).
The expansion can also be derived from the integral representation coming from Binet's second integral formula for the gamma function. Expanding as a geometric series and substituting an integral representation of the Bernoulli numbers leads to the same asymptotic series as above. Furthermore, expanding only finitely many terms of the series gives a formula with an explicit error term:
Inequalities
When x > 0, the function
is completely monotonic and in particular positive. This is a consequence of Bernstein's theorem on monotone functions applied to the integral representation coming from Binet's first integral for the gamma function. Additionally, by the convexity inequality , the integrand in this representation is bounded above by . Consequently
is also completely monotonic. It follows that, for all x > 0,
This recovers a theorem of Horst Alzer.[23] Alzer also proved that, for s ∈ (0, 1),
Related bounds were obtained by Elezovic, Giordano, and Pecaric, who proved that, for x > 0 ,
The mean value theorem implies the following analog of Gautschi's inequality: If x > c, where c ≈ 1.461 is the unique positive real root of the digamma function, and if s > 0, then
Moreover, equality holds if and only if s = 1.[26]
Inspired by the harmonic mean value inequality for the classical gamma function, Horzt Alzer and Graham Jameson proved, among other things, a harmonic mean-value inequality for the digamma function:
The asymptotic expansion gives an easy way to compute ψ(x) when the real part of x is large. To compute ψ(x) for small x, the recurrence relation
can be used to shift the value of x to a higher value. Beal[28] suggests using the above recurrence to shift x to a value greater than 6 and then applying the above expansion with terms above x14 cut off, which yields "more than enough precision" (at least 12 digits except near the zeroes).
As x goes to infinity, ψ(x) gets arbitrarily close to both ln(x − 1/2) and ln x. Going down from x + 1 to x, ψ decreases by 1/x, ln(x − 1/2) decreases by ln(x + 1/2) / (x − 1/2), which is more than 1/x, and ln x decreases by ln(1 + 1/x), which is less than 1/x. From this we see that for any positive x greater than 1/2,
or, for any positive x,
The exponential exp ψ(x) is approximately x − 1/2 for large x, but gets closer to x at small x, approaching 0 at x = 0.
For x < 1, we can calculate limits based on the fact that between 1 and 2, ψ(x) ∈ [−γ, 1 − γ], so
or
From the above asymptotic series for ψ, one can derive an asymptotic series for exp(−ψ(x)). The series matches the overall behaviour well, that is, it behaves asymptotically as it should for large arguments, and has a zero of unbounded multiplicity at the origin too.
This is similar to a Taylor expansion of exp(−ψ(1 / y)) at y = 0, but it does not converge.[29] (The function is not analytic at infinity.) A similar series exists for exp(ψ(x)) which starts with
If one calculates the asymptotic series for ψ(x+1/2) it turns out that there are no odd powers of x (there is no x−1 term). This leads to the following asymptotic expansion, which saves computing terms of even order.
Another alternative is to use the recurrence relation or the multiplication formula to shift the argument of into the range and to evaluate the Chebyshev series there.[30][31]
Special values
The digamma function has values in closed form for rational numbers, as a result of Gauss's digamma theorem. Some are listed below:
Moreover, by taking the logarithmic derivative of or where is real-valued, it can easily be deduced that
Apart from Gauss's digamma theorem, no such closed formula is known for the real part in general. We have, for example, at the imaginary unit the numerical approximation
Roots of the digamma function
The roots of the digamma function are the saddle points of the complex-valued gamma function. Thus they lie all on the real axis. The only one on the positive real axis is the unique minimum of the real-valued gamma function on R+ at x0 = 1.46163214496836234126.... All others occur single between the poles on the negative axis:
holds asymptotically. A better approximation of the location of the roots is given by
and using a further term it becomes still better
which both spring off the reflection formula via
and substituting ψ(xn) by its not convergent asymptotic expansion. The correct second term of this expansion is 1/2n, where the given one works well to approximate roots with small n.
Another improvement of Hermite's formula can be given:[11]
Regarding the zeros, the following infinite sum identities were recently proved by István Mező and Michael Hoffman[11][33]
In general, the function
can be determined and it is studied in detail by the cited authors.
^ ab
Abramowitz, M.; Stegun, I. A., eds. (1972). "6.3 psi (Digamma) Function.". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (10th ed.). New York: Dover. pp. 258–259.
^ abcdMező, István; Hoffman, Michael E. (2017). "Zeros of the digamma function and its Barnes G-function analogue". Integral Transforms and Special Functions. 28 (11): 846–858. doi:10.1080/10652469.2017.1376193. S2CID126115156.
^Nörlund, N. E. (1924). Vorlesungen über Differenzenrechnung. Berlin: Springer.
^ abBlagouchine, Ia. V. (2016). "Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to π−1". Journal of Mathematical Analysis and Applications. 442: 404–434. arXiv:1408.3902. Bibcode:2014arXiv1408.3902B. doi:10.1016/J.JMAA.2016.04.032. S2CID119661147.
^R. Campbell. Les intégrales eulériennes et leurs applications, Dunod, Paris, 1966.
^H.M. Srivastava and J. Choi. Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, the Netherlands, 2001.
^Blagouchine, Iaroslav V. (2014). "A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations". Journal of Number Theory. 148: 537–592. arXiv:1401.3724. doi:10.1016/j.jnt.2014.08.009.
^Classical topi s in complex function theorey. p. 46.
^If it converged to a function f(y) then ln(f(y) / y) would have the same Maclaurin series as ln(1 / y) − φ(1 / y). But this does not converge because the series given earlier for φ(x) does not converge.
^Mathar, R. J. (2004). "Chebyshev series expansion of inverse polynomials". Journal of Computational and Applied Mathematics. 196 (2): 596–607. arXiv:math/0403344. doi:10.1016/j.cam.2005.10.013. App. E
^Hermite, Charles (1881). "Sur l'intégrale Eulérienne de seconde espéce". Journal für die reine und angewandte Mathematik (90): 332–338. doi:10.1515/crll.1881.90.332. S2CID118866486.
^
Mező, István (2014). "A note on the zeros and local extrema of Digamma related functions". arXiv:1409.2971 [math.CV].
Taras Bulba Sampul buku Taras BulbaPengarangNikolai Vasilievich GogolPenerjemahPeter ConstantineNegaraKekaisaran RusiaBahasaBahasa RusiaGenreSejarah, NovelPenerbitRandom HouseTanggal terbit1835Jenis mediaCetakan (Hardback & Paperback)Halaman176 hal.ISBNISBN 0-8129-7119-1 Untuk kegunaan lain, lihat Taras Bulba (disambiguasi). Taras Bulba adalah novel karya Nikolai Gogol. Novel ini berkisah tentang Cossack Ukraina tua, Taras Bulba, dan dua putranya, Andriy dan Ostap. Putra Taras�...
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: The Fables band – news · newspapers · books · scholar · JSTOR (January 2021) (Learn how and when to remove this template message) Some of this artic...
Major League Baseball team season 1915 New York GiantsLeagueNational LeagueBallparkPolo GroundsCityNew York CityOwnersHarry HempsteadManagersJohn McGraw ← 1914 Seasons 1916 → John Purroy Mitchel at the Giants opening game at the Polo Grounds on April 14, 1915, throwing out the ceremonial first pitch John Purroy Mitchel at the Giants opening game at the Polo Grounds on April 14, 1915, where he is shaking hands with Christy Mathewson The 1915 New York Giants season w...
1993 live album by Sam KinisonLive From HellLive album by Sam KinisonReleased1993RecordedHouston, TexasGenreStand-up comedyLabelPriority[1]Sam Kinison chronology Leader of the Banned(1990) Live From Hell(1993) Professional ratingsReview scoresSourceRatingAllMusic[2]PopMatters(unfavorable)[3] Live From Hell is the fourth and final comedy album by Sam Kinison. It was released in 1993, a year after his death in an automobile accident. The album won the Grammy Awar...
Liga Leumit 1972-1973 Competizione Liga Leumit Sport Calcio Edizione 32ª Organizzatore IFA Date dal 16 settembre 1972al 5 maggio 1973 Luogo Israele Partecipanti 16 Risultati Vincitore Hakoah Ramat Gan(2º titolo) Retrocessioni Shimshon Tel AvivHapoel Marmorek Statistiche Miglior marcatore Moshe Romano (18) Incontri disputati 240 Gol segnati 513 (2,14 per incontro) Cronologia della competizione 1971-1972 1973-1974 Manuale La Liga Leumit 1972-1973 è stata la 32ª ediz...
Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...
Токио Вселенная Бумажный дом Создание Создатель Алекс Пина[англ.] Воплощение Исполнение роли Урсула Корберо Первое появление «Согласованные действия» (2017) Последнее появление «Семейная традиция» (2021) Биография Пол женский Место рождения Испания Происхождение Национал...
Ижевско-Воткинское восстание 1918 годаОсновной конфликт: Гражданская война в России Дата 8 августа 1918 — 14 ноября 1918 Место Прикамье Причина Недовольство рабочих Ижевского и Воткинского заводов запретом свободной торговли и понижением зарплаты, попытка мобилизации рабочи...
Cimber Air IATA ICAO Kode panggil QI CIM - Didirikan1949PenghubungBandar Udara SønderborgProgram penumpang setiaMiles&MoreLounge bandaraScandinavian LoungeAliansiStar AllianceArmada58Tujuan15Perusahaan indukCimber Aviation GroupKantor pusatSønderborgTokoh utamaCEO dan pemiliknya, Jørgen NielsenSitus webhttp://www.cimber.dk/ Cimber Air merupakan sebuah maskapai penerbangan yang berbasis di Sønderborg, Denmark, mengoperasikan penerbangan domestik dan internasional atas kerja sama dengan...
Cawan Rococo dengan lapik, sekitar tahun 1753, porselen pasta lembut dengan glasir dan enamel, Museum Seni Los Angeles County Cawan adalah wadah terbuka yang digunakan untuk menampung cairan untuk dituang atau diminum . Meskipun terutama digunakan untuk minum, namun juga dapat digunakan untuk menyimpan padatan untuk dituang (misalnya gula, tepung, biji-bijian, garam).[1][2] Cawan dapat terbuat dari kaca, logam, porselen,[3] tanah liat, kayu, batu, tulang, polistiren, p...
خريطة تظهر موقع «قهستان» في العهد العباسي - لي سترانج. قُهستان (أو قوهستان) هو اسم لعدة مواقع جبلية في بلاد فارس. ذكر صاحب معجم البلدان أن قوهستان تعريب لكلمة كوهستان، ومعناه موضع الجبال لأن كوه هو الجبل بالفارسية، وقال أن أكثر بلاد العجم لا يخلو عن موضع يقال له: قوهستان. لكنه...
Rugby in Singapore This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (September 2023) (Learn how and when to remove this message) Rugby union in SingaporeNational Stadium, Singapore (capacity 55,000)CountrySingaporeGoverning bodySingapore Rugby UnionNational team(s)SingaporeFirst playedLate 19th centuryRegistered players9,400[1]Clubs13International compe...
← квітень → Пн Вт Ср Чт Пт Сб Нд 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 2024 рік 12 квітня — 102-й день року (103-й у високосні роки) в григоріанському календарі. До кінця року залишається 263 дні. Цей день в історії: 11 квітня—12 квітня—13 квітня Зміст ...
Informasi lebih lanjut: Perilaku homoseksual pada hewan Berikut adalah hewan-hewan yang menampilkan perilaku homoseksual. Ini adalah daftar dinamis, yang mungkin tidak dapat memuaskan standar tertentu untuk kelengkapan. Anda dapat membantu dengan mengembangkannya dengan menambahkan klaim yang diberikan sumber tepercaya. Mamalia Artikel utama: Daftar mamalia yang menampilkan perilaku homoseksual Mamalia yang dipilih dari daftar penuh Bison[1] Beruang cokelat[2] Tikus cokelat ...
Edmil Nurjamil Deputi Bidang Intelijen Dalam Negeri BINPetahanaMulai menjabat 29 April 2020 Informasi pribadiLahir0 Oktober 1967 (umur 56)IndonesiaAlma materAkademi Militer (1990)Karier militerPihak IndonesiaDinas/cabang TNI Angkatan DaratMasa dinas1990—sekarangPangkat Mayor Jenderal TNINRP1900004141067SatuanInfanteriSunting kotak info • L • B Mayor Jenderal TNI Edmil Nurjamil, S.E., M.M. (lahir Oktober 1967) adalah seorang perwira tinggi TNI-AD yang sejak 2...
Peter Pilz Peter Pilz (lahir 22 Januari 1954) adalah mantan politikus Austria yang pernah menjadi anggota Partai Hijau Austria dari tahun 1986 hingga 2017. Ia lahir di Kapfenberg, Steiermark, dan pernah menjadi anggota Dewan Nasional Austria (Nationalrat) dari tahun 1986 hingga 1991 dan semenjak tahun 1999. Ia juga pernah menjadi juru bicara federal Partai Hijau dari tahun 1992 hingga 1994. Pada 25 Juli 2017, ia mengumumkan bahwa ia akan membentuk partainya sendiri untuk bertanding dalam pemi...
Extinct order of fishes AcanthodiformesTemporal range: Early Devonian–Early Permian PreꞒ Ꞓ O S D C P T J K Pg N Acanthodes bronni Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: †Acanthodii Order: †AcanthodiformesBerg, 1940 Subgroups see text Acanthodiformes is an order of acanthodian fishes which lived from the Early Devonian to Early Permian.[1][2][3] Subtaxa Family Acanthodidae Genus Acanthodes Genus Acanthodopsis Genu...