Digamma function

The digamma function ,
visualized using domain coloring
Plots of the digamma and the next three polygamma functions along the real line (they are real-valued on the real line)

In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:[1][2][3]

It is the first of the polygamma functions. This function is strictly increasing and strictly concave on ,[4] and it asymptotically behaves as[5]

for complex numbers with large modulus () in the sector with some infinitesimally small positive constant .

The digamma function is often denoted as or Ϝ[6] (the uppercase form of the archaic Greek consonant digamma meaning double-gamma).

Relation to harmonic numbers

The gamma function obeys the equation

Taking the logarithm on both sides and using the functional equation property of the log-gamma function gives:

Differentiating both sides with respect to z gives:

Since the harmonic numbers are defined for positive integers n as

the digamma function is related to them by

where H0 = 0, and γ is the Euler–Mascheroni constant. For half-integer arguments the digamma function takes the values

Integral representations

If the real part of z is positive then the digamma function has the following integral representation due to Gauss:[7]

Combining this expression with an integral identity for the Euler–Mascheroni constant gives:

The integral is Euler's harmonic number , so the previous formula may also be written

A consequence is the following generalization of the recurrence relation:

An integral representation due to Dirichlet is:[7]

Gauss's integral representation can be manipulated to give the start of the asymptotic expansion of .[8]

This formula is also a consequence of Binet's first integral for the gamma function. The integral may be recognized as a Laplace transform.

Binet's second integral for the gamma function gives a different formula for which also gives the first few terms of the asymptotic expansion:[9]

From the definition of and the integral representation of the gamma function, one obtains

with .[10]

Infinite product representation

The function is an entire function,[11] and it can be represented by the infinite product

Here is the kth zero of (see below), and is the Euler–Mascheroni constant.

Note: This is also equal to due to the definition of the digamma function: .

Series representation

Series formula

Euler's product formula for the gamma function, combined with the functional equation and an identity for the Euler–Mascheroni constant, yields the following expression for the digamma function, valid in the complex plane outside the negative integers (Abramowitz and Stegun 6.3.16):[1]

Equivalently,

Evaluation of sums of rational functions

The above identity can be used to evaluate sums of the form

where p(n) and q(n) are polynomials of n.

Performing partial fraction on un in the complex field, in the case when all roots of q(n) are simple roots,

For the series to converge,

otherwise the series will be greater than the harmonic series and thus diverge. Hence

and

With the series expansion of higher rank polygamma function a generalized formula can be given as

provided the series on the left converges.

Taylor series

The digamma has a rational zeta series, given by the Taylor series at z = 1. This is

which converges for |z| < 1. Here, ζ(n) is the Riemann zeta function. This series is easily derived from the corresponding Taylor's series for the Hurwitz zeta function.

Newton series

The Newton series for the digamma, sometimes referred to as Stern series, derived by Moritz Abraham Stern in 1847,[12][13][14] reads

where (s
k
)
is the binomial coefficient. It may also be generalized to

where m = 2, 3, 4, ...[13]

Series with Gregory's coefficients, Cauchy numbers and Bernoulli polynomials of the second kind

There exist various series for the digamma containing rational coefficients only for the rational arguments. In particular, the series with Gregory's coefficients Gn is

where (v)n is the rising factorial (v)n = v(v+1)(v+2) ... (v+n-1), Gn(k) are the Gregory coefficients of higher order with Gn(1) = Gn, Γ is the gamma function and ζ is the Hurwitz zeta function.[15][13] Similar series with the Cauchy numbers of the second kind Cn reads[15][13]

A series with the Bernoulli polynomials of the second kind has the following form[13]

where ψn(a) are the Bernoulli polynomials of the second kind defined by the generating equation

It may be generalized to

where the polynomials Nn,r(a) are given by the following generating equation

so that Nn,1(a) = ψn(a).[13] Similar expressions with the logarithm of the gamma function involve these formulas[13]

and

where and .

Reflection formula

The digamma and polygamma functions satisfy reflection formulas similar to that of the gamma function:

.
.

Recurrence formula and characterization

The digamma function satisfies the recurrence relation

Thus, it can be said to "telescope" 1/x, for one has

where Δ is the forward difference operator. This satisfies the recurrence relation of a partial sum of the harmonic series, thus implying the formula

where γ is the Euler–Mascheroni constant.

Actually, ψ is the only solution of the functional equation

that is monotonic on R+ and satisfies F(1) = −γ. This fact follows immediately from the uniqueness of the Γ function given its recurrence equation and convexity restriction. This implies the useful difference equation:

Some finite sums involving the digamma function

There are numerous finite summation formulas for the digamma function. Basic summation formulas, such as

are due to Gauss.[16][17] More complicated formulas, such as

are due to works of certain modern authors (see e.g. Appendix B in Blagouchine (2014)[18]).

We also have [19]

Gauss's digamma theorem

For positive integers r and m (r < m), the digamma function may be expressed in terms of Euler's constant and a finite number of elementary functions[20]

which holds, because of its recurrence equation, for all rational arguments.

Multiplication theorem

The multiplication theorem of the -function is equivalent to[21]

Asymptotic expansion

The digamma function has the asymptotic expansion

where Bk is the kth Bernoulli number and ζ is the Riemann zeta function. The first few terms of this expansion are:

Although the infinite sum does not converge for any z, any finite partial sum becomes increasingly accurate as z increases.

The expansion can be found by applying the Euler–Maclaurin formula to the sum[22]

The expansion can also be derived from the integral representation coming from Binet's second integral formula for the gamma function. Expanding as a geometric series and substituting an integral representation of the Bernoulli numbers leads to the same asymptotic series as above. Furthermore, expanding only finitely many terms of the series gives a formula with an explicit error term:

Inequalities

When x > 0, the function

is completely monotonic and in particular positive. This is a consequence of Bernstein's theorem on monotone functions applied to the integral representation coming from Binet's first integral for the gamma function. Additionally, by the convexity inequality , the integrand in this representation is bounded above by . Consequently

is also completely monotonic. It follows that, for all x > 0,

This recovers a theorem of Horst Alzer.[23] Alzer also proved that, for s ∈ (0, 1),

Related bounds were obtained by Elezovic, Giordano, and Pecaric, who proved that, for x > 0 ,

where is the Euler–Mascheroni constant.[24] The constants ( and ) appearing in these bounds are the best possible.[25]

The mean value theorem implies the following analog of Gautschi's inequality: If x > c, where c ≈ 1.461 is the unique positive real root of the digamma function, and if s > 0, then

Moreover, equality holds if and only if s = 1.[26]

Inspired by the harmonic mean value inequality for the classical gamma function, Horzt Alzer and Graham Jameson proved, among other things, a harmonic mean-value inequality for the digamma function:

for

Equality holds if and only if .[27]

Computation and approximation

The asymptotic expansion gives an easy way to compute ψ(x) when the real part of x is large. To compute ψ(x) for small x, the recurrence relation

can be used to shift the value of x to a higher value. Beal[28] suggests using the above recurrence to shift x to a value greater than 6 and then applying the above expansion with terms above x14 cut off, which yields "more than enough precision" (at least 12 digits except near the zeroes).

As x goes to infinity, ψ(x) gets arbitrarily close to both ln(x1/2) and ln x. Going down from x + 1 to x, ψ decreases by 1/x, ln(x1/2) decreases by ln(x + 1/2) / (x1/2), which is more than 1/x, and ln x decreases by ln(1 + 1/x), which is less than 1/x. From this we see that for any positive x greater than 1/2,

or, for any positive x,

The exponential exp ψ(x) is approximately x1/2 for large x, but gets closer to x at small x, approaching 0 at x = 0.

For x < 1, we can calculate limits based on the fact that between 1 and 2, ψ(x) ∈ [−γ, 1 − γ], so

or

From the above asymptotic series for ψ, one can derive an asymptotic series for exp(−ψ(x)). The series matches the overall behaviour well, that is, it behaves asymptotically as it should for large arguments, and has a zero of unbounded multiplicity at the origin too.

This is similar to a Taylor expansion of exp(−ψ(1 / y)) at y = 0, but it does not converge.[29] (The function is not analytic at infinity.) A similar series exists for exp(ψ(x)) which starts with

If one calculates the asymptotic series for ψ(x+1/2) it turns out that there are no odd powers of x (there is no x−1 term). This leads to the following asymptotic expansion, which saves computing terms of even order.

Similar in spirit to the Lanczos approximation of the -function is Spouge's approximation.

Another alternative is to use the recurrence relation or the multiplication formula to shift the argument of into the range and to evaluate the Chebyshev series there.[30][31]

Special values

The digamma function has values in closed form for rational numbers, as a result of Gauss's digamma theorem. Some are listed below:

Moreover, by taking the logarithmic derivative of or where is real-valued, it can easily be deduced that

Apart from Gauss's digamma theorem, no such closed formula is known for the real part in general. We have, for example, at the imaginary unit the numerical approximation

Roots of the digamma function

The roots of the digamma function are the saddle points of the complex-valued gamma function. Thus they lie all on the real axis. The only one on the positive real axis is the unique minimum of the real-valued gamma function on R+ at x0 = 1.46163214496836234126.... All others occur single between the poles on the negative axis:

x1 = −0.50408300826445540925...
x2 = −1.57349847316239045877...
x3 = −2.61072086844414465000...
x4 = −3.63529336643690109783...

Already in 1881, Charles Hermite observed[32] that

holds asymptotically. A better approximation of the location of the roots is given by

and using a further term it becomes still better

which both spring off the reflection formula via

and substituting ψ(xn) by its not convergent asymptotic expansion. The correct second term of this expansion is 1/2n, where the given one works well to approximate roots with small n.

Another improvement of Hermite's formula can be given:[11]

Regarding the zeros, the following infinite sum identities were recently proved by István Mező and Michael Hoffman[11][33]

In general, the function

can be determined and it is studied in detail by the cited authors.

The following results[11]

also hold true.

Regularization

The digamma function appears in the regularization of divergent integrals

this integral can be approximated by a divergent general Harmonic series, but the following value can be attached to the series

See also

  • Polygamma function
  • Trigamma function
  • Chebyshev expansions of the digamma function in Wimp, Jet (1961). "Polynomial approximations to integral transforms". Math. Comp. 15 (74): 174–178. doi:10.1090/S0025-5718-61-99221-3.

References

  1. ^ a b Abramowitz, M.; Stegun, I. A., eds. (1972). "6.3 psi (Digamma) Function.". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (10th ed.). New York: Dover. pp. 258–259.
  2. ^ "NIST. Digital Library of Mathematical Functions (DLMF), Chapter 5".
  3. ^ Weisstein, Eric W. "Digamma function". MathWorld.
  4. ^ Alzer, Horst; Jameson, Graham (2017). "A harmonic mean inequality for the digamma function and related results" (PDF). Rendiconti del Seminario Matematico della Università di Padova. 137: 203–209. doi:10.4171/RSMUP/137-10.
  5. ^ "NIST. Digital Library of Mathematical Functions (DLMF), 5.11".
  6. ^ Pairman, Eleanor (1919). Tables of the Digamma and Trigamma Functions. Cambridge University Press. p. 5.
  7. ^ a b Whittaker and Watson, 12.3.
  8. ^ Whittaker and Watson, 12.31.
  9. ^ Whittaker and Watson, 12.32, example.
  10. ^ "NIST. Digital Library of Mathematical Functions (DLMF), 5.9".
  11. ^ a b c d Mező, István; Hoffman, Michael E. (2017). "Zeros of the digamma function and its Barnes G-function analogue". Integral Transforms and Special Functions. 28 (11): 846–858. doi:10.1080/10652469.2017.1376193. S2CID 126115156.
  12. ^ Nörlund, N. E. (1924). Vorlesungen über Differenzenrechnung. Berlin: Springer.
  13. ^ a b c d e f g Blagouchine, Ia. V. (2018). "Three Notes on Ser's and Hasse's Representations for the Zeta-functions" (PDF). INTEGERS: The Electronic Journal of Combinatorial Number Theory. 18A: 1–45. arXiv:1606.02044. Bibcode:2016arXiv160602044B.
  14. ^ "Leonhard Euler's Integral: An Historical Profile of the Gamma Function" (PDF). Archived (PDF) from the original on 2014-09-12. Retrieved 11 April 2022.
  15. ^ a b Blagouchine, Ia. V. (2016). "Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to π−1". Journal of Mathematical Analysis and Applications. 442: 404–434. arXiv:1408.3902. Bibcode:2014arXiv1408.3902B. doi:10.1016/J.JMAA.2016.04.032. S2CID 119661147.
  16. ^ R. Campbell. Les intégrales eulériennes et leurs applications, Dunod, Paris, 1966.
  17. ^ H.M. Srivastava and J. Choi. Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, the Netherlands, 2001.
  18. ^ Blagouchine, Iaroslav V. (2014). "A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations". Journal of Number Theory. 148: 537–592. arXiv:1401.3724. doi:10.1016/j.jnt.2014.08.009.
  19. ^ Classical topi s in complex function theorey. p. 46.
  20. ^ Choi, Junesang; Cvijovic, Djurdje (2007). "Values of the polygamma functions at rational arguments". Journal of Physics A. 40 (50): 15019. Bibcode:2007JPhA...4015019C. doi:10.1088/1751-8113/40/50/007. S2CID 118527596.
  21. ^ Gradshteyn, I. S.; Ryzhik, I. M. (2015). "8.365.5". Table of integrals, series and products. Elsevier Science. ISBN 978-0-12-384933-5. LCCN 2014010276.
  22. ^ Bernardo, José M. (1976). "Algorithm AS 103 psi(digamma function) computation" (PDF). Applied Statistics. 25: 315–317. doi:10.2307/2347257. JSTOR 2347257.
  23. ^ Alzer, Horst (1997). "On Some Inequalities for the Gamma and Psi Functions" (PDF). Mathematics of Computation. 66 (217): 373–389. doi:10.1090/S0025-5718-97-00807-7. JSTOR 2153660.
  24. ^ Elezović, Neven; Giordano, Carla; Pečarić, Josip (2000). "The best bounds in Gautschi's inequality". Mathematical Inequalities & Applications (2): 239–252. doi:10.7153/MIA-03-26.
  25. ^ Guo, Bai-Ni; Qi, Feng (2014). "Sharp inequalities for the psi function and harmonic numbers". Analysis. 34 (2). arXiv:0902.2524. doi:10.1515/anly-2014-0001. S2CID 16909853.
  26. ^ Laforgia, Andrea; Natalini, Pierpaolo (2013). "Exponential, gamma and polygamma functions: Simple proofs of classical and new inequalities". Journal of Mathematical Analysis and Applications. 407 (2): 495–504. doi:10.1016/j.jmaa.2013.05.045.
  27. ^ Alzer, Horst; Jameson, Graham (2017). "A harmonic mean inequality for the digamma function and related results" (PDF). Rendiconti del Seminario Matematico della Università di Padova. 70 (201): 203–209. doi:10.4171/RSMUP/137-10. ISSN 0041-8994. LCCN 50046633. OCLC 01761704. S2CID 41966777.
  28. ^ Beal, Matthew J. (2003). Variational Algorithms for Approximate Bayesian Inference (PDF) (PhD thesis). The Gatsby Computational Neuroscience Unit, University College London. pp. 265–266.
  29. ^ If it converged to a function f(y) then ln(f(y) / y) would have the same Maclaurin series as ln(1 / y) − φ(1 / y). But this does not converge because the series given earlier for φ(x) does not converge.
  30. ^ Wimp, Jet (1961). "Polynomial approximations to integral transforms". Math. Comp. 15 (74): 174–178. doi:10.1090/S0025-5718-61-99221-3. JSTOR 2004225.
  31. ^ Mathar, R. J. (2004). "Chebyshev series expansion of inverse polynomials". Journal of Computational and Applied Mathematics. 196 (2): 596–607. arXiv:math/0403344. doi:10.1016/j.cam.2005.10.013. App. E
  32. ^ Hermite, Charles (1881). "Sur l'intégrale Eulérienne de seconde espéce". Journal für die reine und angewandte Mathematik (90): 332–338. doi:10.1515/crll.1881.90.332. S2CID 118866486.
  33. ^ Mező, István (2014). "A note on the zeros and local extrema of Digamma related functions". arXiv:1409.2971 [math.CV].
OEISA047787 psi(1/3), OEISA200064 psi(2/3), OEISA020777 psi(1/4), OEISA200134 psi(3/4), OEISA200135 to OEISA200138 psi(1/5) to psi(4/5).

Read other articles:

Awara あわら市Kota BenderaLambangLokasi Awara di Prefektur FukuiNegara JepangWilayahChūbuPrefektur FukuiPemerintahan • Wali kotaYasuo SasakiLuas • Total117 km2 (45 sq mi)Populasi (Oktober 1, 2020) • Total27,524 • Kepadatan240/km2 (610/sq mi)Zona waktuUTC+9 (JST)Kode pos919-0692Simbol • PohonPrunus mume• BungaIris ensata• BurungArdeidaeNomor telepon0776-73-1221Alamat2-1-1 Ichihime, Awara-shi...

 

Feliformia TaksonomiKerajaanAnimaliaFilumChordataKelasMammaliaOrdoCarnivoraUpaordoFeliformia Kretzoi, 1945 Famili Nandiniidae †Nimravidae (tidak berperingkat): Aeluroidea Infraordo Feloidea Felidae Prionodontidae †Barbourofelidae Infraordo †Stenoplesictoidea †Percrocutidae †Stenoplesictidae Infraordo Viverroidea Viverridae Superfamili Herpestoidea Eupleridae Herpestidae Hyaenidae †Lophocyonidae lbs Feliformia (juga Feloidea) adalah subordo karnivora yang terdiri dari Keluarga Kuci...

 

Taras Bulba Sampul buku Taras BulbaPengarangNikolai Vasilievich GogolPenerjemahPeter ConstantineNegaraKekaisaran RusiaBahasaBahasa RusiaGenreSejarah, NovelPenerbitRandom HouseTanggal terbit1835Jenis mediaCetakan (Hardback & Paperback)Halaman176 hal.ISBNISBN 0-8129-7119-1 Untuk kegunaan lain, lihat Taras Bulba (disambiguasi). Taras Bulba adalah novel karya Nikolai Gogol. Novel ini berkisah tentang Cossack Ukraina tua, Taras Bulba, dan dua putranya, Andriy dan Ostap. Putra Taras�...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: The Fables band – news · newspapers · books · scholar · JSTOR (January 2021) (Learn how and when to remove this template message) Some of this artic...

 

Major League Baseball team season 1915 New York GiantsLeagueNational LeagueBallparkPolo GroundsCityNew York CityOwnersHarry HempsteadManagersJohn McGraw ← 1914 Seasons 1916 → John Purroy Mitchel at the Giants opening game at the Polo Grounds on April 14, 1915, throwing out the ceremonial first pitch John Purroy Mitchel at the Giants opening game at the Polo Grounds on April 14, 1915, where he is shaking hands with Christy Mathewson The 1915 New York Giants season w...

 

Radio station in Winchester, VirginiaWUSQ-FMWinchester, VirginiaBroadcast areaNorthern Shenandoah ValleyEastern Panhandle of West VirginiaFrequency102.5 MHz (HD Radio)BrandingQ102ProgrammingFormatCountryAffiliationsPremiere NetworksMRN RadioPRN RadioOwnershipOwneriHeartMedia, Inc.(iHM Licenses, LLC)Sister stationsW239BV, WKSI-FM, WFQX, WMREHistoryFirst air dateDecember 10, 1965[1]Former call signsWHPL-FM (1965–1969)WEFG (1969–1982)WUSQ (1982–1986)Call sign meaningW United States...

1993 live album by Sam KinisonLive From HellLive album by Sam KinisonReleased1993RecordedHouston, TexasGenreStand-up comedyLabelPriority[1]Sam Kinison chronology Leader of the Banned(1990) Live From Hell(1993) Professional ratingsReview scoresSourceRatingAllMusic[2]PopMatters(unfavorable)[3] Live From Hell is the fourth and final comedy album by Sam Kinison. It was released in 1993, a year after his death in an automobile accident. The album won the Grammy Awar...

 

Liga Leumit 1972-1973 Competizione Liga Leumit Sport Calcio Edizione 32ª Organizzatore IFA Date dal 16 settembre 1972al 5 maggio 1973 Luogo  Israele Partecipanti 16 Risultati Vincitore Hakoah Ramat Gan(2º titolo) Retrocessioni Shimshon Tel AvivHapoel Marmorek Statistiche Miglior marcatore Moshe Romano (18) Incontri disputati 240 Gol segnati 513 (2,14 per incontro) Cronologia della competizione 1971-1972 1973-1974 Manuale La Liga Leumit 1972-1973 è stata la 32ª ediz...

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

Токио Вселенная Бумажный дом Создание Создатель Алекс Пина[англ.] Воплощение Исполнение роли Урсула Корберо Первое появление «Согласованные действия» (2017) Последнее появление «Семейная традиция» (2021) Биография Пол женский Место рождения Испания Происхождение Национал...

 

Ижевско-Воткинское восстание 1918 годаОсновной конфликт: Гражданская война в России Дата 8 августа 1918 — 14 ноября 1918 Место Прикамье Причина Недовольство рабочих Ижевского и Воткинского заводов запретом свободной торговли и понижением зарплаты, попытка мобилизации рабочи...

 

Cimber Air IATA ICAO Kode panggil QI CIM - Didirikan1949PenghubungBandar Udara SønderborgProgram penumpang setiaMiles&MoreLounge bandaraScandinavian LoungeAliansiStar AllianceArmada58Tujuan15Perusahaan indukCimber Aviation GroupKantor pusatSønderborgTokoh utamaCEO dan pemiliknya, Jørgen NielsenSitus webhttp://www.cimber.dk/ Cimber Air merupakan sebuah maskapai penerbangan yang berbasis di Sønderborg, Denmark, mengoperasikan penerbangan domestik dan internasional atas kerja sama dengan...

Cawan Rococo dengan lapik, sekitar tahun 1753, porselen pasta lembut dengan glasir dan enamel, Museum Seni Los Angeles County Cawan adalah wadah terbuka yang digunakan untuk menampung cairan untuk dituang atau diminum . Meskipun terutama digunakan untuk minum, namun juga dapat digunakan untuk menyimpan padatan untuk dituang (misalnya gula, tepung, biji-bijian, garam).[1][2] Cawan dapat terbuat dari kaca, logam, porselen,[3] tanah liat, kayu, batu, tulang, polistiren, p...

 

خريطة تظهر موقع «قهستان» في العهد العباسي - لي سترانج. قُهستان (أو قوهستان) هو اسم لعدة مواقع جبلية في بلاد فارس. ذكر صاحب معجم البلدان أن قوهستان تعريب لكلمة كوهستان، ومعناه موضع الجبال لأن كوه هو الجبل بالفارسية، وقال أن أكثر بلاد العجم لا يخلو عن موضع يقال له: قوهستان. لكنه...

 

Rugby in Singapore This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (September 2023) (Learn how and when to remove this message) Rugby union in SingaporeNational Stadium, Singapore (capacity 55,000)CountrySingaporeGoverning bodySingapore Rugby UnionNational team(s)SingaporeFirst playedLate 19th centuryRegistered players9,400[1]Clubs13International compe...

← квітень → Пн Вт Ср Чт Пт Сб Нд 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30           2024 рік 12 квітня — 102-й день року (103-й у високосні роки) в григоріанському календарі. До кінця року залишається 263 дні. Цей день в історії: 11 квітня—12 квітня—13 квітня Зміст ...

 

Informasi lebih lanjut: Perilaku homoseksual pada hewan Berikut adalah hewan-hewan yang menampilkan perilaku homoseksual. Ini adalah daftar dinamis, yang mungkin tidak dapat memuaskan standar tertentu untuk kelengkapan. Anda dapat membantu dengan mengembangkannya dengan menambahkan klaim yang diberikan sumber tepercaya. Mamalia Artikel utama: Daftar mamalia yang menampilkan perilaku homoseksual Mamalia yang dipilih dari daftar penuh Bison[1] Beruang cokelat[2] Tikus cokelat ...

 

Edmil Nurjamil Deputi Bidang Intelijen Dalam Negeri BINPetahanaMulai menjabat 29 April 2020 Informasi pribadiLahir0 Oktober 1967 (umur 56)IndonesiaAlma materAkademi Militer (1990)Karier militerPihak IndonesiaDinas/cabang TNI Angkatan DaratMasa dinas1990—sekarangPangkat Mayor Jenderal TNINRP1900004141067SatuanInfanteriSunting kotak info • L • B Mayor Jenderal TNI Edmil Nurjamil, S.E., M.M. (lahir Oktober 1967) adalah seorang perwira tinggi TNI-AD yang sejak 2...

Peter Pilz Peter Pilz (lahir 22 Januari 1954) adalah mantan politikus Austria yang pernah menjadi anggota Partai Hijau Austria dari tahun 1986 hingga 2017. Ia lahir di Kapfenberg, Steiermark, dan pernah menjadi anggota Dewan Nasional Austria (Nationalrat) dari tahun 1986 hingga 1991 dan semenjak tahun 1999. Ia juga pernah menjadi juru bicara federal Partai Hijau dari tahun 1992 hingga 1994. Pada 25 Juli 2017, ia mengumumkan bahwa ia akan membentuk partainya sendiri untuk bertanding dalam pemi...

 

Extinct order of fishes AcanthodiformesTemporal range: Early Devonian–Early Permian PreꞒ Ꞓ O S D C P T J K Pg N Acanthodes bronni Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: †Acanthodii Order: †AcanthodiformesBerg, 1940 Subgroups see text Acanthodiformes is an order of acanthodian fishes which lived from the Early Devonian to Early Permian.[1][2][3] Subtaxa Family Acanthodidae Genus Acanthodes Genus Acanthodopsis Genu...