Coherent, wave-shaped gaseous structure in the Milky Way
The Radcliffe wave is a neighbouring coherent gaseous structure in the Milky Way, dotted with a related high concentration of interconnected stellar nurseries. It stretches about 8,800 light years.[1][2] This structure runs with the trajectory of the Milky Way arms.[3][4]
It lies at its closest (the Taurus Molecular Cloud) at around 400 light-years and at its farthest about 5,000 light-years (the Cygnus X star complex) from the Sun, always within the Local Arm (Orion Arm) itself, spanning about 40% of its length and on average 20% of its width.[5][4] Its discovery was announced in January 2020, and its proximity surprised astronomers.[1][6]
Formation
This page or section uses colour as the only way to convey important information. To meet Wikipedia's web accessibility guidelines, please help improve this page or section so it is easier to read by those with disabilities by adding an additional means for these readers to access the relevant information. See the guides to editing for accessibility at contrast and colours.(May 2022)
Scientists do not know how the undulation of dust and gas formed. It has been suggested that it could be a result of a much smaller galaxy colliding with the Milky Way, leaving behind "ripples", or could be related to dark matter.[1][7] Inside the dense clouds, gas can be so compressed that new stars are born.[2] It has been suggested that this may be where the Sun originated.[1]
Many of the star-forming regions found in the Radcliffe wave were thought to be part of a similar-sized but somewhat helio-centric ring which contained the Solar System, the "Gould Belt". It is now understood the nearest discrete relative concentration of sparse interstellar matter instead forms a massive wave.[1][2]
Discovery
The wave was discovered by an international team of astronomers including Catherine Zucker and João Alves.[8][4] It was announced by co-author Alyssa A. Goodman at the 235th meeting of the American Astronomical Society, held at Honolulu[9] and published in the journal Nature on 7 January 2020.[10] The discovery was made using data collected by the European Space Agency's Gaia space observatory.[11]
Alves, João; Zucker, Catherine; Goodman, Alyssa A.; Speagle, Joshua S.; Meingast, Stefan; Robitaille, Thomas; Finkbeiner, Douglas P.; Schlafly, Edward F.; Green, Gregory M. (2020). "A Galactic-scale gas wave in the solar neighborhood". Nature. 578 (7794): 237–239. arXiv:2001.08748. Bibcode:2020Natur.578..237A. doi:10.1038/s41586-019-1874-z. PMID31910431.