Quintic threefold

In mathematics, a quintic threefold is a 3-dimensional hypersurface of degree 5 in 4-dimensional projective space . Non-singular quintic threefolds are Calabi–Yau manifolds.

The Hodge diamond of a non-singular quintic 3-fold is

1
00
010
11011011
010
00
1

Mathematician Robbert Dijkgraaf said "One number which every algebraic geometer knows is the number 2,875 because obviously, that is the number of lines on a quintic."[1]

Definition

A quintic threefold is a special class of Calabi–Yau manifolds defined by a degree projective variety in . Many examples are constructed as hypersurfaces in , or complete intersections lying in , or as a smooth variety resolving the singularities of another variety. As a set, a Calabi-Yau manifold iswhere is a degree homogeneous polynomial. One of the most studied examples is from the polynomialcalled a Fermat polynomial. Proving that such a polynomial defines a Calabi-Yau requires some more tools, like the Adjunction formula and conditions for smoothness.

Hypersurfaces in P4

Recall that a homogeneous polynomial (where is the Serre-twist of the hyperplane line bundle) defines a projective variety, or projective scheme, , from the algebrawhere is a field, such as . Then, using the adjunction formula to compute its canonical bundle, we havehence in order for the variety to be Calabi-Yau, meaning it has a trivial canonical bundle, its degree must be . It is then a Calabi-Yau manifold if in addition this variety is smooth. This can be checked by looking at the zeros of the polynomialsand making sure the setis empty.

Examples

Fermat Quintic

One of the easiest examples to check of a Calabi-Yau manifold is given by the Fermat quintic threefold, which is defined by the vanishing locus of the polynomialComputing the partial derivatives of gives the four polynomialsSince the only points where they vanish is given by the coordinate axes in , the vanishing locus is empty since is not a point in .

As a Hodge Conjecture testbed

Another application of the quintic threefold is in the study of the infinitesimal generalized Hodge conjecture where this difficult problem can be solved in this case.[2] In fact, all of the lines on this hypersurface can be found explicitly.

Dwork family of quintic three-folds

Another popular class of examples of quintic three-folds, studied in many contexts, is the Dwork family. One popular study of such a family is from Candelas, De La Ossa, Green, and Parkes,[3] when they discovered mirror symmetry. This is given by the family[4] pages 123-125where is a single parameter not equal to a 5-th root of unity. This can be found by computing the partial derivates of and evaluating their zeros. The partial derivates are given byAt a point where the partial derivatives are all zero, this gives the relation . For example, in we getby dividing out the and multiplying each side by . From multiplying these families of equations together we have the relationshowing a solution is either given by an or . But in the first case, these give a smooth sublocus since the varying term in vanishes, so a singular point must lie in . Given such a , the singular points are then of the form such that where . For example, the pointis a solution of both and its partial derivatives since , and .

Other examples

Curves on a quintic threefold

Computing the number of rational curves of degree can be computed explicitly using Schubert calculus. Let be the rank vector bundle on the Grassmannian of -planes in some rank vector space. Projectivizing to gives the projective Grassmannian of degree lines in and descends to a vector bundle on this projective Grassmannian. Its total Chern class isin the Chow ring . Now, a section of the bundle corresponds to a linear homogeneous polynomial, , so a section of corresponds to a quintic polynomial, a section of . Then, in order to calculate the number of lines on a generic quintic threefold, it suffices to compute the integral[5]This can be done by using the splitting principle. Sinceand for a dimension vector space, ,so the total Chern class of is given by the productThen, the Euler class, or the top class isexpanding this out in terms of the original Chern classes givesusing relations implied by Pieri's formula, including , , .

Rational curves

Herbert Clemens (1984) conjectured that the number of rational curves of a given degree on a generic quintic threefold is finite. (Some smooth but non-generic quintic threefolds have infinite families of lines on them.) This was verified for degrees up to 7 by Sheldon Katz (1986) who also calculated the number 609250 of degree 2 rational curves. Philip Candelas, Xenia C. de la Ossa, and Paul S. Green et al. (1991) conjectured a general formula for the virtual number of rational curves of any degree, which was proved by Givental (1996) (the fact that the virtual number equals the actual number relies on confirmation of Clemens' conjecture, currently known for degree at most 11 Cotterill (2012)). The number of rational curves of various degrees on a generic quintic threefold is given by

2875, 609250, 317206375, 242467530000, ...(sequence A076912 in the OEIS).

Since the generic quintic threefold is a Calabi–Yau threefold and the moduli space of rational curves of a given degree is a discrete, finite set (hence compact), these have well-defined Donaldson–Thomas invariants (the "virtual number of points"); at least for degree 1 and 2, these agree with the actual number of points.

See also

References

  1. ^ Robbert Dijkgraaf (29 March 2015). "The Unreasonable Effectiveness of Quantum Physics in Modern Mathematics". youtube.com. Trev M. Archived from the original on 2021-12-21. Retrieved 10 September 2015. see 29 minutes 57 seconds
  2. ^ Albano, Alberto; Katz, Sheldon (1991). "Lines on the Fermat quintic threefold and the infinitesimal generalized Hodge conjecture". Transactions of the American Mathematical Society. 324 (1): 353–368. doi:10.1090/S0002-9947-1991-1024767-6. ISSN 0002-9947.
  3. ^ Candelas, Philip; De La Ossa, Xenia C.; Green, Paul S.; Parkes, Linda (1991-07-29). "A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory". Nuclear Physics B. 359 (1): 21–74. Bibcode:1991NuPhB.359...21C. doi:10.1016/0550-3213(91)90292-6. ISSN 0550-3213.
  4. ^ Gross, Mark; Huybrechts, Daniel; Joyce, Dominic (2003). Ellingsrud, Geir; Olson, Loren; Ranestad, Kristian; Stromme, Stein A. (eds.). Calabi-Yau Manifolds and Related Geometries: Lectures at a Summer School in Nordfjordeid, Norway, June 2001. Universitext. Berlin Heidelberg: Springer-Verlag. pp. 123–125. ISBN 978-3-540-44059-8.
  5. ^ Katz, Sheldon. Enumerative Geometry and String Theory. p. 108.

Read other articles:

Nel seguente testo sull'argomento economia è presente una sospetta violazione di copyright. Motivo: tipologia di inserimento È sconsigliato wikificare o ampliare il testo attuale, che potrebbe essere cancellato. Puoi invece riformulare il testo con parole tue o partecipare alla discussione. Segui i suggerimenti del progetto di riferimento.Avvisa l'autore: {{Avvisocontrolcopy|voce=Partita doppia finanziaria}}--~~~~ Questa voce o sezione sull'argomento economia non cita le fon...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Marcel Schäfer Informasi pribadiTanggal lahir 7 Juni 1984 (umur 39)Tempat lahir Aschaffenburg, Jerman BaratTinggi 1,84 m (6 ft 1⁄2 in)Posisi bermain BekInformasi klubKlub saat ini VfL WolfsburgNomor 4Karier junior1989–1996...

 

Just Stand Up!Singel oleh Artists Stand Up To CancerDirilis21 Agustus 2008 (2008-08-21) (digital) 30 September 2008 (2008-09-30) (CD single)FormatDigital download, CD singleDirekam2008GenrePop, R&BDurasi3:34PenciptaBabyface, Ronnie WaltonProduserBabyface, Antonio L.A. Reid Just Stand Up! adalah singel amal untuk penggalangan dana bagi penderita kanker. Lagu ini rilis pada tanggal 21 Agustus 2008. Lagu ini dinyanyikan secara langsung di TV ABC, NBC, CBS pada tanggal 5 September 2...

Gedung perakitan boeing ini merupakan Gedung terbesar didunia Boeing 777 India air keluar dari gedung perakitan Ceremonial Boeing 787-Dreamliner Boeing DreamLifter 747 di Boeing Everett Factory Boeing Everett Factory, Everett, Washington, adalah sebuah bangunan perakitan pesawat milik Boeing. Terletak di sudut timur laut Paine Field, itu adalah gedung terbesar di dunia dengan volume pada 13. 385. 378 m 3 (472370319 kaki kubik) dan mencakup 399. 480 m 2 (98, 3 hektare). Ini adalah di mana pesa...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Heinrich Maarten KrabbeHendrik Maarten Krabbé (tanggal tidak diketahui)Lahir(1868-05-04)4 Mei 1868London, InggrisMeninggal22 Desember 1931(1931-12-22) (umur 63)Amsterdam, BelandaNama lainHeinrich Martin KrabbéPekerjaanArtist Hendrik Maarte...

 

301, 302SutradaraPark Chul-sooDitulis olehLee Seo-gunPemeranBang Eun-jinHwang CinePenyuntingPark Gok-jiTanggal rilis21 April 1995Durasi100 menitNegaraKorea SelatanBahasaKorea 301, 302 atau 301/302 adalah film Korea Selatan tahun 1995 yang disutradarai oleh Park Chul-soo. Film ini menceritakan mengenai dua perempuan Korea yang tinggal sebagai tetangga dalam bangunan apartemen yang sama. Keduanya menjalani hidup dengan cara yang berbeda, yang satu sering memanjakan diri dan selalu berlebihan da...

For the metro station, see Coyoacán metro station. Borough in Mexico City, MexicoCoyoacánBorough Top: Coyoacán downtown; Middle: Frida Kahlo Museum, Santo Niño Jesús Chapel; Bottom: Santa Catarina Plaza, Cortés House SealCoyoacán within Mexico CityCoordinates: 19°21′00″N 99°09′44″W / 19.35000°N 99.16222°W / 19.35000; -99.16222CountryMexicoFederal entityMexico CityEstablished1928Named forPre-Columbian city of CoyoacánSeatJardín Hidalgo No. 1 Col. Vi...

 

Ongoing COVID-19 viral pandemic in Tanzania This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (August 2021) COVID-19 pandemic in TanzaniaDiseaseCOVID-19Virus strainSARS-CoV-2LocationTanzaniaFirst outbreakWuhan, Hubei, ChinaIndex caseArushaArrival date16 March 2020(4 years, 2 weeks and 6 days)Confirmed cases43,223[1]Recovered42,...

 

2005 British filmWallis and EdwardDVD coverDirected byDave MooreWritten bySarah WilliamsProduced byMark PybusStarringJoely RichardsonSteven Campbell MooreCinematographyMike EleyEdited byMelanie Viner-CuneoMusic byJohn E. KeaneDistributed byITVRelease date 18 December 2005 (2005-12-18) Running time94 minutesCountryUnited KingdomLanguageEnglish Wallis & Edward (in Canada also known as Her Royal Affair[1]) is a 2005 British television film, scripted by Sarah Williams,...

This article is about the townland in County Galway. For the village in County Westmeath, see Ballinahown. Village and townland in Connacht, IrelandBaile na hAbhann BallynahownVillage and townlandBaile na hAbhannLocation in IrelandCoordinates: 53°14′05″N 9°30′25″W / 53.234722°N 9.506944°W / 53.234722; -9.506944CountryIrelandProvinceConnachtCountyGalwayElevation[1]9 m (30 ft)Irish Grid ReferenceM043212 Baile na hAbhann, anglicised as Ballyn...

 

This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: song titles should use quote marks, not italics, per MOS. Please help improve this article if you can. (June 2020) (Learn how and when to remove this message) The best performing song of the year, Happy, was released by American singer Pharrell Williams New Zealand rapper Savage released the top performing song by a New Zealand artist in 2014, with the song Freaks released alongside Australian DJ...

 

«In riconoscimento del grande servizio reso dagli studi e dalla scoperta del fluoro, e dall'impiego nella scienza del forno elettrico che da lui prende il nome» (Motivazione del Premio Nobel) Henri Moissan Premio Nobel per la chimica 1906 Henri Moissan (Parigi, 28 settembre 1852 – Parigi, 20 febbraio 1907) è stato un chimico francese, premio Nobel per la chimica nel 1906. È noto perché fu il primo a isolare il fluoro. Inventò il forno ad arco elettrico. Indice 1 Biografia 2 Il ri...

Pour les articles homonymes, voir Lhassa (homonymie). Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (avril 2010). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pr...

 

Episode list One-Punch Man is a Japanese anime television series based on the webcomic of the same name written by One and its subsequent manga remake illustrated by Yusuke Murata. Set in City Z, the story focuses on Saitama, a superhero who has grown bored as he has become so powerful that all of his battles end in a single punch. The first season was directed by Shingo Natsume at Madhouse and written by Tomohiro Suzuki.[1] The series also features character design by Chikashi Kubota...

 

Kejuaraan DuniaFormula Satu FIA 1984 Juara Dunia Pembalap: Niki Lauda Juara Dunia Konstruktor: McLaren-TAG Sebelum: 1983 Sesudah: 1985 Balapan menurut negaraBalapan menurut musim Niki Lauda berhasil memenangkan gelar Kejuaraan Dunia Pembalap untuk yang ketiga dan terakhir kalinya dengan selisih setengah poin. Rekan setim Lauda, yaitu Alain Prost (foto tahun 2008), tertinggal 0,5 poin dari Lauda di posisi kedua. Formula Satu musim 1984 merupakan musim balapan reguler Formula Satu yang diadaka...

You can help expand this article with text translated from the corresponding article in Vietnamese. (March 2009) Click [show] for important translation instructions. View a machine-translated version of the Vietnamese article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English ...

 

Indian theatre personality, filmmaker Gubbi VeerannaBorn24 January 1891Gubbi, Kingdom of Mysore, (present day in Tumkur District, Karnataka), IndiaDied18 October 1972Bangalore (St. Martha's Hospital)Occupation(s)Theatre director, actorSpouse(s)Sundaramma, Bhadramma, B. JayammaChildren11 Gubbi Hampanna Veeranna (1891 – 1972) was an Indian theatre director. He was one of the pioneers and most prolific contributors to Kannada theatre. He established the drama company, Gubbi Sree Channabasavesh...

 

County in Massachusetts, United States County in MassachusettsHampshire CountyCountyOld Hampshire County Courthouse SealLocation within the U.S. state of MassachusettsMassachusetts's location within the U.S.Coordinates: 42°20′N 72°40′W / 42.34°N 72.66°W / 42.34; -72.66Country United StatesState MassachusettsFounded1662Named forHampshire, EnglandSeatNorthamptonLargest townAmherstArea • Total545 sq mi (1,410 km2) • ...

Beberapa senyawa organofluorin yang penting. A: fluorometana B: isoflurana C: suatu CFC D: suatu HFC E: asam triflat F: Teflon G: PFOS H: fluorourasil I: fluoksetina Kimia organofluorin menjelaskan kimia dari senyawa organofluorin, senyawa organik yang mengandung ikatan karbon–fluorin. Senyawa organofluorin memiliki beragam aplikasi mulai dari antiminyak dan -air hingga obat-obatan, pendingin, dan reagen dalam katalisis. Selain aplikasi-aplikasi tersebut, beberapa senyawa organofluorin meru...

 

2015 Mexican filmGuardians of OzMexican theatrical release posterDirected byAlberto Mar[1][2]Screenplay byEvan GoreJorge R GutiérrezDoug LangdaleStory byJorge R. Gutiérrez[4]Produced byFernando de FuentesJosé C. García de LetonaStarringHéctor Emmanuel GómezSusana ZavaletaLoreto PeraltaRaúl AraizaJorge El Burro van RankinEdited byRoberto BoladoMusic byLeoncio Lara[5]ProductioncompaniesÁnima EstudiosDiscreet Arts Productions[2][6]Distribu...