The QED vacuum is subject to fluctuations about a dormant zero average-field condition;[4] Here is a description of the quantum vacuum:
The quantum theory asserts that a vacuum, even the most perfect vacuum devoid of any matter, is not really empty. Rather the quantum vacuum can be depicted as a sea of continuously appearing and disappearing [pairs of] particles that manifest themselves in the apparent jostling of particles that is quite distinct from their thermal motions. These particles are ‘virtual’, as opposed to real, particles. ...At any given instant, the vacuum is full of such virtual pairs, which leave their signature behind, by affecting the energy levels of atoms.
— Joseph Silk On the Shores of the Unknown, p. 62[5]
It is sometimes attempted to provide an intuitive picture of virtual particles based upon the Heisenberg energy-time uncertainty principle:
(where ΔE and Δt are energy and time variations, and ħ the Planck constant divided by 2π) arguing along the lines that the short lifetime of virtual particles allows the "borrowing" of large energies from the vacuum and thus permits particle generation for short times.[6]
This interpretation of the energy-time uncertainty relation is not universally accepted, however.[7][8] One issue is the use of an uncertainty relation limiting measurement accuracy as though a time uncertainty Δt determines a "budget" for borrowing energy ΔE. Another issue is the meaning of "time" in this relation, because energy and time (unlike position q and momentum p, for example) do not satisfy a canonical commutation relation (such as [q, p] = iħ).[9] Various schemes have been advanced to construct an observable that has some kind of time interpretation, and yet does satisfy a canonical commutation relation with energy.[10][11] The many approaches to the energy-time uncertainty principle are a continuing subject of study.[11]
The Heisenberg uncertainty principle does not allow a particle to exist in a state in which the particle is simultaneously at a fixed location, say the origin of coordinates, and has also zero momentum. Instead the particle has a range of momentum and spread in location attributable to quantum fluctuations; if confined, it has a zero-point energy.[12]
An uncertainty principle applies to all quantum mechanical operators that do not commute.[13] In particular, it applies also to the electromagnetic field. A digression follows to flesh out the role of commutators for the electromagnetic field.[14]
The standard approach to the quantization of the electromagnetic field begins by introducing a vector potential A and a scalar potential V to represent the basic electromagnetic electric field E and magnetic field B using the relations:[14] The vector potential is not completely determined by these relations, leaving open a so-called gauge freedom. Resolving this ambiguity using the Coulomb gauge leads to a description of the electromagnetic fields in the absence of charges in terms of the vector potential and the momentum fieldΠ, given by: where ε0 is the electric constant of the SI units. Quantization is achieved by insisting that the momentum field and the vector potential do not commute. That is, the equal-time commutator is:[15] where r, r′ are spatial locations, ħ is the reduced Planck constant, δij is the Kronecker delta and δ(r − r′) is the Dirac delta function. The notation [ , ] denotes the commutator.
Quantization can be achieved without introducing the vector potential, in terms of the underlying fields themselves:[16] where the circumflex denotes a Schrödinger time-independent field operator, and εijk is the antisymmetric Levi-Civita tensor.
Because of the non-commutation of field variables, the variances of the fields cannot be zero, although their averages are zero.[17] The electromagnetic field has therefore a zero-point energy, and a lowest quantum state. The interaction of an excited atom with this lowest quantum state of the electromagnetic field is what leads to spontaneous emission, the transition of an excited atom to a state of lower energy by emission of a photon even when no external perturbation of the atom is present.[18]
As a result of quantization, the quantum electrodynamic vacuum can be considered as a material medium.[20] It is capable of vacuum polarization.[21][22] In particular, the force law between charged particles is affected.[23][24] The electrical permittivity of quantum electrodynamic vacuum can be calculated, and it differs slightly from the simple ε0 of the classical vacuum. Likewise, its permeability can be calculated and differs slightly from μ0. This medium is a dielectric with relative dielectric constant > 1, and is diamagnetic, with relative magnetic permeability < 1.[25][26] Under some extreme circumstances in which the field exceeds the Schwinger limit (for example, in the very high fields found in the exterior regions of pulsars[27]), the quantum electrodynamic vacuum is thought to exhibit nonlinearity in the fields.[28] Calculations also indicate birefringence and dichroism at high fields.[29] Many of electromagnetic effects of the vacuum are small, and only recently have experiments been designed to enable the observation of nonlinear effects.[30]PVLAS and other teams are working towards the needed sensitivity to detect QED effects.
Attainability
A perfect vacuum is itself only attainable in principle.[31][32] It is an idealization, like absolute zero for temperature, that can be approached, but never actually realized:
One reason [a vacuum is not empty] is that the walls of a vacuum chamber emit light in the form of black-body radiation...If this soup of photons is in thermodynamic equilibrium with the walls, it can be said to have a particular temperature, as well as a pressure. Another reason that perfect vacuum is impossible is the Heisenberg uncertainty principle which states that no particles can ever have an exact position ...Each atom exists as a probability function of space, which has a certain nonzero value everywhere in a given volume. ...More fundamentally, quantum mechanics predicts ...a correction to the energy called the zero-point energy [that] consists of energies of virtual particles that have a brief existence. This is called vacuum fluctuation.
— Luciano Boi, "Creating the physical world ex nihilo?" p. 55[31]
Virtual particles make a perfect vacuum unrealizable, but leave open the question of attainability of a quantum electrodynamic vacuum or QED vacuum. Predictions of QED vacuum such as spontaneous emission, the Casimir effect and the Lamb shift have been experimentally verified, suggesting QED vacuum is a good model for a high quality realizable vacuum. There are competing theoretical models for vacuum, however. For example, quantum chromodynamic vacuum includes many virtual particles not treated in quantum electrodynamics. The vacuum of quantum gravity treats gravitational effects not included in the Standard Model.[33] It remains an open question whether further refinements in experimental technique ultimately will support another model for realizable vacuum.
^
Cao, Tian Yu, ed. (2004). Conceptual Foundations of Quantum Field Theory. Cambridge University Press. p. 179. ISBN978-0-521-60272-3. For each stationary classical background field there is a ground state of the associated quantized field. This is the vacuum for that background.
^
Classical vacuum is not a material medium, but a reference state used to define the SI units. Its permittivity is the electric constant and its permeability is the magnetic constant, both of which are exactly known by definition, and are not measured properties. See Mackay & Lakhtakia, p. 20, footnote 6.
^
A vaguer description is provided by Allday, Jonathan (2002). Quarks, Leptons and the Big Bang (2nd ed.). CRC Press. p. 224. ISBN978-0-7503-0806-9. The interaction will last for a certain duration Δt. This implies that the amplitude for the total energy involved in the interaction is spread over a range of energies ΔE.
^
Quantities satisfying a canonical commutation rule are said to be noncompatible observables, by which is meant that they can both be measured simultaneously only with limited precision. See Itô, Kiyosi, ed. (1993). "§ 351 (XX.23) C: Canonical commutation relations". Encyclopedic Dictionary of Mathematics (2nd ed.). MIT Press. p. 1303. ISBN978-0-262-59020-4.
^
This commutation relation is oversimplified, and a correct version replaces the δ product on the right by the transverse δ-tensor:
where û is the unit vector of k, û = k/k. For a discussion see, Compagno, G.; Passante, R.; Persico, F. (2005). "§2.1 Canonical quantization in the Coulomb gauge". Atom-Field Interactions and Dressed Atoms. Cambridge Studies in Modern Optics, vol. 17. Cambridge University Press. p. 31. ISBN978-0-521-01972-9.
^
Schweber, Silvan S. (2003). "Elementary particles". In Heilbron, J. L. (ed.). The Oxford Companion to the History of Modern Science. Oxford University Press. pp. 246–247. ISBN978-0-19-511229-0. Thus in QED the presence of an electric charge eo polarizes the "vacuum" and the charge that is observed at a large distance differs from eo and is given by e = eo/ε with ε the dielectric constant of the vacuum.
^ ab
Luciano Boi (2009). "Creating the physical world ex nihilo? On the quantum vacuum and its fluctuations". In Carafoli, Ernesto; Danieli, Gian Antonio; Longo, Giuseppe O. (eds.). The Two Cultures: Shared Problems. Springer. p. 55. ISBN978-88-470-0868-7.
Buddhist temple in Tianjin, China This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Temple of Great Compassion – news · newspapers · books · scholar · JSTOR (October 2015) (Learn how and when to remove this template message) Temple of Great Compassion大悲院Temple of Great CompassionReligionAffiliationBuddhi...
Большой симфонический оркестр имени Петра Ильича Чайковского Жанр классическая музыка Годы c 1930 Страна Россия Место создания Москва Руководитель Владимир Федосеев Официальный сайт Награды Большой симфонический оркестр имени П. И. Чайковского (сокращённо — Б
Karte von 1934 Podhale in Małe Ciche Vortatragraben mit Zakopane von der Gubałówka Historische Hauptstadt Nowy Targ Landeanflug auf den Sportflugplatz Folklore-Hochzeit der Podhalanie Das Podhale (wörtlich: Unter den Almen bzw. Almenvorland) ist eine der südlichsten Regionen Polens, manchmal auch „Polens Hochland“ genannt, in der Woiwodschaft Kleinpolen. Es liegt am nördlichen Rand der Tatra in den Karpaten und wird durch eine reiche Folkloretradition charakterisiert. Die Einwohner ...
Dieser Artikel behandelt das heutige erweiterte Stadtviertel. Für die historische Villenkolonie siehe Villenkolonie Lichterfelde. Ortskern von Lichterfelde West Botanischer Garten Lichterfelde West ist eine Ortslage im Berliner Bezirk Steglitz-Zehlendorf und stellt den westlich des Teltowkanals gelegenen Teil des Ortsteils Lichterfelde dar. Im Norden und Westen grenzt Lichterfelde West an Zehlendorf, Dahlem und Steglitz. Die Finckensteinallee gliedert Lichterfelde West in die nördlich geleg...
Athletics at the1995 Summer UniversiadeTrack events100 mmenwomen200 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomen5000 mmenwomen10,000 mmenwomen100 m hurdleswomen110 m hurdlesmen400 m hurdlesmenwomen3000 msteeplechasemen4×100 m relaymenwomen4×400 m relaymenwomenRoad eventsMarathonmenwomen10 km walkwomen20 km walkmenField eventsHigh jumpmenwomenPole vaultmenLong jumpmenwomenTriple jumpmenwomenShot putmenwomenDiscus throwmenwomenHammer throwmenJavelin throwmenwomenCombined eventsHeptathlon...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Micah Joseph LebensohnLahir(1828-02-02)2 Februari 1828Vilna, Kegubernuran Vilna, Kekaisaran RusiaMeninggal17 Februari 1852(1852-02-17) (umur 24)Vilna, Kegubernuran Vilna, Kekaisaran RusiaNama penaMikhalPekerjaanPenyair, penerjemahBahasaIbran...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أغسطس 2020) آنف بن أحمد أبانمي المدير التنفيذي لمؤسسة البريد السعودي (سُبُل) في المنصب2019 – حتى الآن معلومات شخصية الجنسية السعودية الديانة الإسلام الحياة العملية الم
1937 Romanian general election ← 1933 20 December 1937 (1937-12-20) 1939 → All 387 seats in the Chamber of DeputiesAll 113 seats in the SenateTurnout66.07% First party Second party Leader Dinu Brătianu Iuliu Maniu Party PNL PNȚ Leader since 1934 1937 Last election 105 S / 300 D 0 S / 29 D Seats won 97 S / 152 D 10 S / 86 D Seat change 8 S / 148 D 10 S / 57 D Popular vote 1,103,353 D 626,612 D Percentage 36.46% D 20....
Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW • CAPES • Google (N • L • A) (Maio de 2018) Nota: Para outros significados, veja Uberaba (desambiguação). Uberaba Município do Brasil Vista parcial do centro.Vista parcial do centro. Símbolos Bandeira Brasão de armas Hino Lema Indefes...
Tonight's the NightSampul (Edisi Normal) Tonight's the NightLagu oleh ROMEOdari album Midnight TheatreDirilis31 Oktober 2012 (2012-10-31)FormatCD singleGenreJ-popLabelVictor Entertainment Colourful Records Tonight's the Night adalah singel berbahasa Jepang kedua dari ROMEO. Ada lima versi berbeda tersedia, yang mencakup mencakup satu dari lima huruf dari nama setiap artis.[1][2][3][4][5][6][7][8][9][10][1...
Este artigo ou secção necessita de referências de fontes secundárias fiáveis e independentes. Fontes primárias, ou com conflitos de interesse, não são adequadas para verbetes enciclopédicos. Ajude a incluir referências.—Encontre fontes: ABW • CAPES • Google (N • L • A) (Maio de 2014) Esta página ou seção carece de contexto. Este artigo (ou seção) não possui um contexto definido, ou seja, não explica de forma cl...
Countries that offered help or condolences to Turkey and/or Syria after the earthquakes (Red: Turkey and Syria) Various countries and organizations have responded to the 6 February 2023 Turkey–Syria earthquake. At least 105 countries and 16 international organizations had pledged support for victims of the earthquake, including humanitarian aid.[1] More than eleven countries provided teams with search and rescue dogs to locate victims under the debris[2] and monetary support...
SriwedariKelurahanKantor Lurah SriwedariPeta lokasi Kelurahan SriwedariNegara IndonesiaProvinsiJawa TengahKotaSurakartaKecamatanLaweyanKodepos57141Kode Kemendagri33.72.01.1006 Kode BPS3372010005 Gapura Taman Sriwedari yang terletak di kelurahan ini. Sriwedari (Jawa: ꦯꦿꦷꦮꦼꦢꦫꦶ, translit. Sriwedari) adalah kelurahan di Kecamatan Laweyan, Surakarta. Kelurahan ini memiliki kode pos 57141. Pada tahun 2020, kelurahan ini berpenduduk 3.951 jiwa. Nama kelurahan ini diambi...
DzygaMDB Знімок екрана сайту DzygaMDBПосилання dzygamdb.com/ukТип база даних українського кіноРеєстрація необов'язковаМови українська, англійськаВласник ТОВ «Дзиґаемдібі»Започатковано 2019Стан активнийРейтинг Alexa 750,210 (березень 2021)[1]Ключові особи Вікторія Тігіпко (співзасновниц...
Airline of the United States Mokulele Airlines IATA ICAO Callsign 9X FDY FRIENDLY Founded1994 (as Mokulele Flight Service)AOC #141A246O[1]Hubs Kahului Honolulu Fleet size11Destinations10Parent companySouthern Airways ExpressHeadquartersPalm Beach, FloridaKey people Stan Little Jr (CEO of Southern Airways Express) Richard Schuman (VP of Hawaii Operations) FounderRebecca InabaEmployees235Websitemokuleleairlines.com Mokulele flew Piper Navajo Chieftains for years, with Hawai'i scene...
Governing body of football in Madagascar Malagasy Football FederationCAFFounded1961HeadquartersAntananarivoFIFA affiliation1964CAF affiliation1963PresidentAlfred Randriamanampisoa[1]Websitehttp://fmf.mg/ The Malagasy Football Federation (French: Fédération Malgache de Football, FMF) is the governing body of football in Madagascar. It was founded in 1961, affiliated to FIFA in 1964 and to CAF in 1963. It organizes the national football league and the national team. On 19 March 2008, ...
BoysPengarahShankarPenulisShankarSujathaDihasilkan olehA. M. RathnamDibintangiSiddharthGenelia D'SouzaBharathS. ThamanNakulSinematografiRavi K. ChandranDisunting olehV. T. VijayanMuzik olehA. R. RahmanSyarikatpenerbitanSri Surya MoviesTarikh tayangan29 August 2003Masa tayangan170 mins[1]NegaraIndiaBahasaTamil Boys (IPA: [bɔɪz]; Bahasa Tamil: பாய்ஸ், Pāys, IPA: [bɑːjs] [?]) merupakan filem remaja Tamil yang ditayangkan pada 2003. Ia dibintangi oleh ...
Soma pangaladen Paruromys dominator Status konservasiRisiko rendahIUCN16375 TaksonomiKelasMammaliaOrdoRodentiaSuperfamiliMuroideaFamiliMuridaeGenusParuromysSpesiesParuromys dominator (Thomas, 1921) Tata namaProtonimRattus dominator Soma pangaladen, soma soma, atau tikus Soma ( Paruromys dominator ) adalah spesies hewan pengerat dalam famili Muridae . Ia bersifat monotaip dalam genus Paruromys . Spesies ini endemik di Sulawesi di Indonesia, yang mendiami hutan pada ketinggian dari permukaan la...
Joan JettJoan Jett, with The Blackhearts, performing at the Tribute to Our Heroes celebration at Fort Hood, Texas in May 2005Genel bilgilerDoğumJoan Marie Larkin22 Eylül 1958 (65 yaşında), Wynnewood, Pennsylvania, ABDTarzlarRock, hard rock, punk rockMesleklerŞarkıcı, şarkı sözü yazarı, müzisyenÇalgılarVokal, gitar, bas gitarEtkin yıllar1975–günümüzMüzik şirketiBlackheart, Epic, Boardwalk, MCA, CBS/Sony, Warner Bros.İlişkili hareketlerThe Runaways, Joan ...