Piling-up lemma

In cryptanalysis, the piling-up lemma is a principle used in linear cryptanalysis to construct linear approximations to the action of block ciphers. It was introduced by Mitsuru Matsui (1993) as an analytical tool for linear cryptanalysis.[1] The lemma states that the bias (deviation of the expected value from 1/2) of a linear Boolean function (XOR-clause) of independent binary random variables is related to the product of the input biases:[2]

or

where is the bias (towards zero[3]) and the imbalance:[4][5]

.

Conversely, if the lemma does not hold, then the input variables are not independent.[6]

Interpretation

The lemma implies that XOR-ing independent binary variables always reduces the bias (or at least does not increase it); moreover, the output is unbiased if and only if there is at least one unbiased input variable.

Note that for two variables the quantity is a correlation measure of and , equal to ; can be interpreted as the correlation of with .

Expected value formulation

The piling-up lemma can be expressed more naturally when the random variables take values in . If we introduce variables (mapping 0 to 1 and 1 to -1) then, by inspection, the XOR-operation transforms to a product:

and since the expected values are the imbalances, , the lemma now states:

which is a known property of the expected value for independent variables.

For dependent variables the above formulation gains a (positive or negative) covariance term, thus the lemma does not hold. In fact, since two Bernoulli variables are independent if and only if they are uncorrelated (i.e. have zero covariance; see uncorrelatedness), we have the converse of the piling up lemma: if it does not hold, the variables are not independent (uncorrelated).

Boolean derivation

The piling-up lemma allows the cryptanalyst to determine the probability that the equality:

holds, where the X's are binary variables (that is, bits: either 0 or 1).

Let P(A) denote "the probability that A is true". If it equals one, A is certain to happen, and if it equals zero, A cannot happen. First of all, we consider the piling-up lemma for two binary variables, where and .

Now, we consider:

Due to the properties of the xor operation, this is equivalent to

X1 = X2 = 0 and X1 = X2 = 1 are mutually exclusive events, so we can say

Now, we must make the central assumption of the piling-up lemma: the binary variables we are dealing with are independent; that is, the state of one has no effect on the state of any of the others. Thus we can expand the probability function as follows:

Now we express the probabilities p1 and p2 as 1/2 + ε1 and 1/2 + ε2, where the ε's are the probability biases — the amount the probability deviates from 1/2.

Thus the probability bias ε1,2 for the XOR sum above is 2ε1ε2.

This formula can be extended to more X's as follows:

Note that if any of the ε's is zero; that is, one of the binary variables is unbiased, the entire probability function will be unbiased — equal to 1/2.

A related slightly different definition of the bias is in fact minus two times the previous value. The advantage is that now with

we have

adding random variables amounts to multiplying their (2nd definition) biases.

Practice

In practice, the Xs are approximations to the S-boxes (substitution components) of block ciphers. Typically, X values are inputs to the S-box and Y values are the corresponding outputs. By simply looking at the S-boxes, the cryptanalyst can tell what the probability biases are. The trick is to find combinations of input and output values that have probabilities of zero or one. The closer the approximation is to zero or one, the more helpful the approximation is in linear cryptanalysis.

However, in practice, the binary variables are not independent, as is assumed in the derivation of the piling-up lemma. This consideration has to be kept in mind when applying the lemma; it is not an automatic cryptanalysis formula.

See also

  • Variance of a sum of independent real variables

References

  1. ^ Matsui, Mitsuru (1994). "Linear Cryptanalysis Method for DES Cipher". Advances in Cryptology – EUROCRYPT '93. Lecture Notes in Computer Science. Vol. 765. pp. 386–397. doi:10.1007/3-540-48285-7_33. ISBN 978-3-540-57600-6. S2CID 533517.
  2. ^ Li, Qin; Boztaş, S. (December 2007). "Extended Linear Cryptanalysis and Extended Piling-up Lemma" (PDF). ISC Turkey. S2CID 5508314. Archived from the original (PDF) on 2017-01-17.
  3. ^ The bias (and imbalance) may also be taken as an absolute value; if the bias with flipped sign (bias towards one) is used the lemma needs an additional (-1)^(n+1) sign factor in the right hand side.
  4. ^ Harpes, Carlo; Kramer, Gerhard G.; Massey, James L. (1995). "A Generalization of Linear Cryptanalysis and the Applicability of Matsui's Piling-up Lemma". Advances in Cryptology – EUROCRYPT '95. Lecture Notes in Computer Science. Vol. 921. pp. 24–38. doi:10.1007/3-540-49264-X_3. ISBN 978-3-540-59409-3.
  5. ^ Kukorelly, Zsolt (1999). "The Piling-Up Lemma and Dependent Random Variables". Cryptography and Coding. Lecture Notes in Computer Science. Vol. 1746. pp. 186–190. doi:10.1007/3-540-46665-7_22. ISBN 978-3-540-66887-9.
  6. ^ Nyberg, Kaisa (February 26, 2008). "Linear Cryptanalysis (Cryptology lecture)" (PDF). Helsinki University of Technology, Laboratory for Theoretical Computer Science.

Read other articles:

Bernried Lambang kebesaranLetak Bernried di Weilheim-Schongau NegaraJermanNegara bagianBayernWilayahUpper BavariaKreisWeilheim-SchongauPemerintahan • MayorJosef SteigenbergerLuas • Total13,79 km2 (532 sq mi)Ketinggian600 m (2,000 ft)Populasi (2013-12-31)[1] • Total2.158 • Kepadatan1,6/km2 (4,1/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos82347Kode area telepon08158Pelat kendaraanWMSitus webwww.bernried.d...

 

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

 

Loss of nerve supply This magnified image of type 2 muscle fibers shows denervation atrophy occurring at the white spaces at the top left and bottom center of the image. The white space represents a disruption of the nerve fibers, resulting in a loss of nerve supply to the muscle fibers. Denervation is any loss of nerve supply regardless of the cause. If the nerves lost to denervation are part of the neuronal communication to a specific function in the body then altered or a loss of physiolog...

Venkaiah Naiduवेंकैया नायडू Wakil Presiden India ke-13Masa jabatan11 Agustus 2017 – 10 Agustus 2022PresidenRam Nath KovindDroupadi MurmuPendahuluMohammad Hamid AnsariPenggantiJagdeep DhankharMenteri Informasi dan PenyiaranMasa jabatan5 Juli 2016 – 17 Juli 2017Perdana MenteriNarendra ModiPendahuluArun JaitleyPenggantiSmriti IraniKementerian Pembangunan Kota, Kementerian Perumahan dan Pemberantasan Kemiskinan Kota (Jabatan Tambahan)Masa jabatan26 Me...

 

 

「アプリケーション」はこの項目へ転送されています。英語の意味については「wikt:応用」、「wikt:application」をご覧ください。 この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典がまったく示されていないか不十分です。内容に関する文献や情報源が必要です。(2018年4月) 古い情報を更新する必要があります。(2021年3月)出...

 

 

C-137 StratolinerC-18 Un VC-137B Stratoliner au décollage en 1981. Constructeur Boeing Rôle Avion de transport de personnalités Statut Retiré du service Premier vol 31 décembre 1958 Dérivé de Boeing 707 Motorisation Moteur Pratt & Whitney TF33-PW-102 Nombre 4 Type Turboréacteur à double flux Poussée unitaire 80 kN Dimensions Envergure 44,42 m Longueur 46,61 m Hauteur 12,93 m Surface alaire 279,63 m2 Masses À vide 44 663 kg Avec armement 135&#...

Conservative political party in Austria Austrian People's Party Österreichische VolksparteiAbbreviationÖVPChairpersonKarl NehammerSecretary GeneralChristian StockerParliamentary leaderAugust WögingerFounded17 April 1945; 79 years ago (1945-04-17)HeadquartersLichtenfelsgasse 7, 1010First District, ViennaYouth wingYoung People's PartyParty academyÖVP Political AcademyMembership (2017)c. 600,000[1][needs update]IdeologyChristian democracyLiberal conservatism...

 

 

British economist (1883–1946) John Keynes and Keynes redirect here. For his father, see John Neville Keynes. For other uses, see Keynes (disambiguation). The Right HonourableThe Lord KeynesCB FBAKeynes in 1933Born(1883-06-05)5 June 1883Cambridge, EnglandDied21 April 1946(1946-04-21) (aged 62)Tilton, near Firle in Sussex, EnglandEducationEton CollegeKing's College, CambridgePolitical partyLiberalSpouse Lydia Lopokova ​(m. 1925)​ParentsJohn Neville Keynes...

 

 

Lambang pundak komandan sayap Komandan Sayap (Wing commander, Wg Cdr dalam RAF, IAF, dan PAF, WGCDR dalam RNZAF dan RAAF, dulunya terkadang W/C di seluruh penugasan) adalah sebuah pangkat terkomisi senior dalam Royal Air Force[1] dan angkatan-angkatan udara beberapa negara yang memiliki pengaruh Inggris pada masa lalu, termasuk beberapa negara Persemakmuran namun tidak termasuk Kanada dan Afrika Selatan. Ini terkadang dipakai sebagai terjemahan dari pangkat setara di negara-negara yan...

My Name Is TaninoUna scena del film.Titolo originaleMy Name Is Tanino Paese di produzioneItalia Anno2002 Durata105 min Generecommedia RegiaPaolo Virzì SoggettoPaolo Virzì SceneggiaturaFrancesco Bruni, Francesco Piccolo e Paolo Virzì ProduttoreVittorio Cecchi Gori FotografiaArnaldo Catinari MontaggioJacopo Quadri MusicheCarlo Virzì ScenografiaIan Brock e Sonia Peng Interpreti e personaggi Corrado Fortuna: Gaetano Tanino Mendolia Rachel McAdams: Sally Garfield Frank Crudele: Angelo Maria Li...

 

 

この項目では、広域地名について説明しています。カザフスタンの都市については「テュルキスタン」をご覧ください。 「トルコ共和国」あるいは「トルクメニスタン」とは異なります。 トルキスタンに含まれる国家・地域を囲った地図トルキスタンの面積は、インド亜大陸よりも広い テュルク系民族分布 トルキスタン(Turkestan / Turkistan)は、今日テュルク系民族が...

 

 

Raised stone with a runic inscription The Lingsberg Runestone, Sweden, known as U 240 An early runestone: the Möjbro Runestone from Hagby (first placed near Möjebro), Uppland, Sweden. As with other early runic inscriptions, (e.g. Kylver Stone from about 300–400 CE) this is written from right to left, while later Runestones were written from left to right.[citation needed] The text is Frawaradaz anahaha is laginaz.[1] A runestone is typically a raised stone with a runic ins...

For other uses, see Xiantao (disambiguation). County-level & Sub-prefectural city in Hubei, People's Republic of ChinaXiantao 仙桃市County-level & Sub-prefectural cityXiantao West Railway StationLocation of Xiantao City jurisdiction in HubeiXiantaoLocation of the city centre in HubeiCoordinates: 30°19′41″N 113°26′35″E / 30.328°N 113.443°E / 30.328; 113.443CountryPeople's Republic of ChinaProvinceHubeiArea • County-level & Sub-pref...

 

 

Map all coordinates using OpenStreetMap Download coordinates as: KML GPX (all coordinates) GPX (primary coordinates) GPX (secondary coordinates) This is a list of airports in the former Netherlands Antilles upon its dissolution in 2010, sorted by location. The Netherlands Antilles were part of the Lesser Antilles and consisted of two groups of islands in the Caribbean Sea: Bonaire and Curaçao (off the Venezuelan coast), and Saba, Sint Eustatius and Sint Maarten (located southeast of the Vir...

 

 

British colonial official Sir George Thomas Michael O'BrienKCMG6th Governor of FijiIn officeMarch 1897 – 1901MonarchVictoriaPreceded bySir John ThurstonSucceeded bySir William Allardyce (acting)5th High Commissioner for the Western PacificIn officeMarch 1897 – 1901Preceded bySir John ThurstonSucceeded bySir William Allardyce (acting)9th Colonial Secretary of Hong KongIn office1892–1895Preceded byFrancis FlemingSucceeded bySir James Stewart Lockhart19th ...

School supported as charity The Blue Coat School (in this case Christ's Hospital, London) as drawn by Augustus Pugin and Thomas Rowlandson for Rudolph Ackermann's Microcosm of London (1808-11). The picture shows the Great Hall on St. Matthew's Day, September 21st. Two senior boys destined for scholarships to Oxford and Cambridge Universities, known as Grecians, gave orations in praise of the school, one in Latin and the other in English. The Anniversary Meeting of the Charity Children in the ...

 

 

Philosophical legal dialogue by Cicero This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: De Legibus – news · newspapers · books · scholar · JSTOR (November 2009) (Learn how and when to remove this message) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk ...

 

 

Species of bird Lesser bird-of-paradise Male Conservation status Least Concern  (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Aves Order: Passeriformes Family: Paradisaeidae Genus: Paradisaea Species: P. minor Binomial name Paradisaea minorShaw, 1809 The lesser bird-of-paradise (Paradisaea minor) is a bird-of-paradise in the genus Paradisaea. Description The lesser bird-of-paradise is medium-sized, up to 32 cm (13...

Pour l’article ayant un titre homophone, voir Henry Rousso. Pour les articles homonymes, voir Rousseau. Henri RousseauRousseau dans son atelier en 1907 par Dornac.Naissance 21 mai 1844Laval, FranceDécès 2 septembre 1910 (à 66 ans)Paris, FranceSépulture Cimetière parisien de Bagneux (1910 - 12 octobre 1947), jardin de la Perrine (depuis le 12 octobre 1947)Période d'activité 1870-1910Nom de naissance Henri Julien Félix RousseauAutres noms Le Douanier RousseauNationalité França...

 

 

Fairy tale by Hans Christian Andersen This article is about the 1835 literary fairy tale by Hans Christian Andersen. For other uses, see Thumbelina (disambiguation). Not to be confused with Thumleima. ThumbelinaShort story by Hans Christian AndersenIllustration by Vilhelm Pedersen,Andersen's first illustratorText available at WikisourceOriginal titleTommeliseTranslatorMary HowittCountryDenmarkLanguageDanishGenre(s)Literary fairy talePublicationPublished inFairy Tales Told for Children. F...