Trapdoor function

The idea of trapdoor function. A trapdoor function f with its trapdoor t can be generated by an algorithm Gen. f can be efficiently computed, i.e., in probabilistic polynomial time. However, the computation of the inverse of f is generally hard, unless the trapdoor t is given.[1]

In theoretical computer science and cryptography, a trapdoor function is a function that is easy to compute in one direction, yet difficult to compute in the opposite direction (finding its inverse) without special information, called the "trapdoor". Trapdoor functions are a special case of one-way functions and are widely used in public-key cryptography.[2]

In mathematical terms, if f is a trapdoor function, then there exists some secret information t, such that given f(x) and t, it is easy to compute x. Consider a padlock and its key. It is trivial to change the padlock from open to closed without using the key, by pushing the shackle into the lock mechanism. Opening the padlock easily, however, requires the key to be used. Here the key t is the trapdoor and the padlock is the trapdoor function.

An example of a simple mathematical trapdoor is "6895601 is the product of two prime numbers. What are those numbers?" A typical "brute-force" solution would be to try dividing 6895601 by many prime numbers until finding the answer. However, if one is told that 1931 is one of the numbers, one can find the answer by entering "6895601 ÷ 1931" into any calculator. This example is not a sturdy trapdoor function – modern computers can guess all of the possible answers within a second – but this sample problem could be improved by using the product of two much larger primes.

Trapdoor functions came to prominence in cryptography in the mid-1970s with the publication of asymmetric (or public-key) encryption techniques by Diffie, Hellman, and Merkle. Indeed, Diffie & Hellman (1976) coined the term. Several function classes had been proposed, and it soon became obvious that trapdoor functions are harder to find than was initially thought. For example, an early suggestion was to use schemes based on the subset sum problem. This turned out rather quickly to be unsuitable.

As of 2004, the best known trapdoor function (family) candidates are the RSA and Rabin families of functions. Both are written as exponentiation modulo a composite number, and both are related to the problem of prime factorization.

Functions related to the hardness of the discrete logarithm problem (either modulo a prime or in a group defined over an elliptic curve) are not known to be trapdoor functions, because there is no known "trapdoor" information about the group that enables the efficient computation of discrete logarithms.

A trapdoor in cryptography has the very specific aforementioned meaning and is not to be confused with a backdoor (these are frequently used interchangeably, which is incorrect). A backdoor is a deliberate mechanism that is added to a cryptographic algorithm (e.g., a key pair generation algorithm, digital signing algorithm, etc.) or operating system, for example, that permits one or more unauthorized parties to bypass or subvert the security of the system in some fashion.

Definition

A trapdoor function is a collection of one-way functions { fk : DkRk } (kK), in which all of K, Dk, Rk are subsets of binary strings {0, 1}*, satisfying the following conditions:

  • There exists a probabilistic polynomial time (PPT) sampling algorithm Gen s.t. Gen(1n) = (k, tk) with kK ∩ {0, 1}n and tk ∈ {0, 1}* satisfies | tk | < p (n), in which p is some polynomial. Each tk is called the trapdoor corresponding to k. Each trapdoor can be efficiently sampled.
  • Given input k, there also exists a PPT algorithm that outputs xDk. That is, each Dk can be efficiently sampled.
  • For any kK, there exists a PPT algorithm that correctly computes fk.
  • For any kK, there exists a PPT algorithm A s.t. for any xDk, let y = A ( k, fk(x), tk ), and then we have fk(y) = fk(x). That is, given trapdoor, it is easy to invert.
  • For any kK, without trapdoor tk, for any PPT algorithm, the probability to correctly invert fk (i.e., given fk(x), find a pre-image x' such that fk(x' ) = fk(x)) is negligible.[3][4][5]

If each function in the collection above is a one-way permutation, then the collection is also called a trapdoor permutation.[6]

Examples

In the following two examples, we always assume that it is difficult to factorize a large composite number (see Integer factorization).

RSA assumption

In this example, the inverse of modulo (Euler's totient function of ) is the trapdoor:

If the factorization of is known, then can be computed. With this the inverse of can be computed , and then given , we can find . Its hardness follows from the RSA assumption.[7]

Rabin's quadratic residue assumption

Let be a large composite number such that , where and are large primes such that , and kept confidential to the adversary. The problem is to compute given such that . The trapdoor is the factorization of . With the trapdoor, the solutions of z can be given as , where . See Chinese remainder theorem for more details. Note that given primes and , we can find and . Here the conditions and guarantee that the solutions and can be well defined.[8]

See also

Notes

  1. ^ Ostrovsky, pp. 6–9
  2. ^ Bellare, M (June 1998). "Many-to-one trapdoor functions and their relation to public-key cryptosystems". Advances in Cryptology — CRYPTO '98. Lecture Notes in Computer Science. Vol. 1462. pp. 283–298. doi:10.1007/bfb0055735. ISBN 978-3-540-64892-5. S2CID 215825522.
  3. ^ Pass's Notes, def. 56.1
  4. ^ Goldwasser's lecture notes, def. 2.16
  5. ^ Ostrovsky, pp. 6–10, def. 11
  6. ^ Pass's notes, def 56.1; Dodis's def 7, lecture 1.
  7. ^ Goldwasser's lecture notes, 2.3.2; Lindell's notes, p. 17, Ex. 1.
  8. ^ Goldwasser's lecture notes, 2.3.4.

References

Read other articles:

Noiron-sous-Gevrey Noiron-sous-Gevrey (Frankreich) Staat Frankreich Region Bourgogne-Franche-Comté Département (Nr.) Côte-d’Or (21) Arrondissement Beaune Kanton Nuits-Saint-Georges Gemeindeverband Gevrey-Chambertin et de Nuits-Saint-Georges Koordinaten 47° 12′ N, 5° 5′ O47.1944444444445.0808333333333Koordinaten: 47° 12′ N, 5° 5′ O Höhe 195–227 m Fläche 6,56 km² Einwohner 1.150 (1. Januar 2020) Bevölkerungsdichte 175 ...

Hafner Rotachute Typ Experimentalflugzeug, Tragschrauber Entwurfsland Vereinigtes Konigreich Vereinigtes Königreich Hersteller F. Hills & Son Erstflug 11. Februar 1942 (im Fahrzeugschlepp) Stückzahl etwa 8 P-5 im Museum of Army Flying Der Hafner Rotachute ist ein als Tragschrauber ausgelegtes experimentelles Fluggerät, das von Raoul Hafner konstruiert und von Hills & Son in Manchester gebaut wurde. Inhaltsverzeichnis 1 Geschichte 1.1 Entwicklung 1.2 Erprobung 1.3 Weitere Nutzu...

Lluvia, vapor y velocidad. El gran ferrocarril del Oeste(Rain, Steam, and Speed –The Great Western Railway) Año 1844Autor Joseph Mallord William TurnerTécnica Óleo sobre lienzoEstilo RomanticismoTamaño 91 cm × 121,8 cmLocalización National Gallery, Londres, Reino Unido Reino Unido[editar datos en Wikidata] Lluvia, vapor y velocidad. El gran ferrocarril del Oeste (en inglés, Rain, Steam, and Speed – The Great Western Railway) es un conocido cuadro del pintor romántic...

In 2003 werd het 89ste Campeonato Paranaense gespeeld voor voetbalclubs uit de Braziliaanse staat Paraná. De competitie werd gespeeld van 25 januari tot 23 maart en werd georganiseerd door de Federação Paranaense de Futebol. Coritiba werd kampioen. Eerste fase De 8 clubs met de beste resultaten gecombineerd over beide groepen stootten door naar de knock-outfase, de twee clubs met de laagste punten degraderen. Groep 1 Plaats Club Wed. W G V Saldo Ptn. 1. Coritiba 8 7 1 0 20:6 15 2. Grêmio ...

2001 single by Nelly Furtado Shit on the Radio redirects here. For the song by Robbie Williams, see Take the Crown. Shit on the Radio (Remember the Days)Standard international artworkSingle by Nelly Furtadofrom the album Whoa, Nelly! ReleasedDecember 3, 2001 (2001-12-03)Studio The Gymnasium (Toronto, Canada) Can-Am Recorders (Tarzana, Los Angeles) Length3:55LabelDreamWorksSongwriter(s)Nelly FurtadoProducer(s) Gerald Eaton Brian West Nelly Furtado Nelly Furtado singles chronolog...

The Solon people (simplified Chinese: 索伦; traditional Chinese: 索倫; pinyin: Suǒlún) are a subgroup of the Ewenki (Evenk) people of northeastern Asia. They live in China's Inner Mongolia Autonomous Region and Heilongjiang Province, and constitute the majority of China's Ewenki. Terminology and classification The lands of the Daur (Tagour) and Solon people shown east and west of the Nonni River on an early 18th-century Jesuit map The Ewenki (also spelled Evenki) people are ...

كلايف أوين معلومات شخصية الميلاد 3 أكتوبر 1964 (العمر 59 سنة)كوفنتري، إنجلترا الإقامة هايغيت  مواطنة المملكة المتحدة  الزوجة ساره جين 1995-الآن (طفلان) عدد الأولاد 2   الحياة العملية المدرسة الأم الأكاديمية الملكية للفنون المسرحية (التخصص:تمثيل) (–1986)  المهنة ممثل أفلام...

American singer (born 1944) This article is about the American singer. For the English children's author, see Diana Ross (author). Diana RossRoss performing in 2022Born (1944-03-26) March 26, 1944 (age 79)Detroit, Michigan, U.S.OccupationsSingeractressYears active1959–present[1]Spouses Robert Ellis Silberstein ​ ​(m. 1971; div. 1977)​ Arne Næss Jr. ​ ​(m. 1986; div. 2000)​ Chil...

Public park in Beckenham This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Croydon Road Recreation Ground – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) Information board by main entrance Croydon Road Recreation Ground is a public park located...

American politician Curtis S. BrambleBramble in July 2014Member of the Utah SenateIncumbentAssumed office January 1, 2001Preceded byHoward C. NielsonConstituency16th district (2001–2023)24th district (2023–present) Personal detailsBornChicago, IllinoisPolitical partyRepublicanSpouseSusanChildren6ResidenceProvoAlma materBrigham Young University (BS, MS)OccupationCertified Public AccountantWebsiteLegislative Website Curtis Scott Bramble is an American politician and Certified Public Acc...

  لمعانٍ أخرى، طالع زيد (توضيح). زيد (بالروسية: Антон Заславский)‏  معلومات شخصية اسم الولادة أنتون زاسلافسكي الميلاد 2 سبتمبر 1989 (العمر 34 سنة)ساراتوف  الإقامة كايزرسلاوترنلوس أنجلوس (2014–)[1][2]  الجنسية  ألمانيا العشير سيلينا غوميز (2015–2015)[3]أليسيا ...

Coordenadas: 32° N 80° E Ngariམངའ་རིས་ས་ཁུལ་mnga' ris sa khul阿里地区阿里地區Ālǐ Dìqū    Prefeitura   Gompa de Chiu, situada perto do lago Manasarovar, com o monte Kailash ao fundo Gompa de Chiu, situada perto do lago Manasarovar, com o monte Kailash ao fundo Localização Mapa do Tibete (a laranja) com a prefeitura de Ngari a vermelhoMapa do Tibete (a laranja) com a prefeitura de Ngari a vermelho Localização em map...

American radio series A major contributor to this article appears to have a close connection with its subject. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. Please discuss further on the talk page. (October 2016) (Learn how and when to remove this template message) Image of trademarked Radio Tales logo and photo of composer Winifred Phillips and producer Winnie Waldron in the Hilton Hotel in New York City after winning a Gracie award i...

У Вікіпедії є статті про інші значення цього терміна: Занзібар. Занзібар суах. Jamhuri ya Watu wa Zanzibar араб. زنجبار‎ Прапор Занзібару Столиця Занзібар Країна Танзанія Підрозділи 5 областей і столиця Офіційна мова англійська і суахілі Населення  - повне 1096381[1](2009) Етні...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: St Michael's on Wyre – news · newspapers · books · scholar · JSTOR (July 2007) (Learn how and when to remove this template message) Human settlement in EnglandSt Michael's on WyreSt Michael's Church, St Michael's on WyreSt Michael's on WyreShown within Wyre Bor...

Drupal Тип система управления содержимым Автор Дрис Бёйтарт Разработчик Дрис Бёйтарт и Drupal Association[d] Написана на PHP, с использованием Symfony Операционная система Linux, Windows, macOS и UNIX Первый выпуск 15 января 2001 Последняя версия      10.2.0-rc1[1],     &#...

赫尔曼·切尔诺夫赫尔曼·切尔诺夫于2015年10月6日在纽约演讲出生 (1923-07-01) 1923年7月1日(100歲)美国纽约州纽约市公民权美国母校 纽约市立学院 布朗大学 知名于 切尔诺夫界 切尔诺夫分布 切尔诺夫脸 奖项 院士, 美国文理科学院 (1974) 会员, 美国国家科学院 (1980) 威尔克斯纪念奖 (1987) 院士, 美国数学学会 (2012) 科学生涯研究领域 数学 统计学 物理学 机构 UIUC Stanford MIT Harvard �...

Railway station in Tadami, Fukushima Prefecture, Japan This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Aizu-Yokota Station – news · newspapers · books · scholar · JSTOR (July 2022) (Learn how and when to remove this template message) Aizu-Yokota Station会津横田駅Aizu-Ōshio Station in August 2006General...

United States historic placePrimrose CottageU.S. Historic districtContributing property Primrose Cottage, October 2021Location, Roswell, GeorgiaCoordinates34°01′01″N 84°21′52″W / 34.01701°N 84.36441°W / 34.01701; -84.36441Built1839Built byWillis BallArchitectWillis BallPart ofRoswell Historic District (ID74000682[1])Designated CPMay 2, 1974 Primrose Cottage was the first permanent private home in Roswell, Georgia, United States. The house built...

Peta Komun Odalengo Grande (merah) di Wilayah Alessandria (kuning), Piemonte, Itali.Odalengo GrandeKomun di ItaliNegara ItaliDaerahPiedmontWilayahAlessandriaZon waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST) Odalengo Grande merupakan sebuah komun dan bandar yang terletak di Alessandria di Piedmont dalam kawasan Itali. Rujukan lbsPiedmont · Komun Provinsi Alessandria Acqui Terme Albera Ligure Alessandria Alfiano Natta Alice Bel Colle Alluvioni Cambiò Altavilla Monferra...