Periodic trends

The periodic trends in properties of elements.

In chemistry, periodic trends are specific patterns present in the periodic table that illustrate different aspects of certain elements when grouped by period and/or group. They were discovered by the Russian chemist Dmitri Mendeleev in 1863. Major periodic trends include atomic radius, ionization energy, electron affinity, electronegativity, nucleophilicity, electrophilicity, valency, nuclear charge, and metallic character.[1] Mendeleev built the foundation of the periodic table.[2] Mendeleev organized the elements based on atomic weight, leaving empty spaces where he believed undiscovered elements would take their places.[3] Mendeleev’s discovery of this trend allowed him to predict the existence and properties of three unknown elements, which were later discovered by other chemists and named gallium, scandium, and germanium.[4] English physicist Henry Moseley discovered that organizing the elements by atomic number instead of atomic weight would naturally group elements with similar properties.[3]

Periodic property Across the period Down the group
Atomic radius Decreases Increases
Nucleophilicity
Metallic character
Nuclear charge Increases
Effective nuclear charge Decreases
Ionization energy
Electron affinity
Electronegativity
Nonmetallic character
Valency Constant

Atomic radius

The atomic radius is half of the distance between two nuclei of two atoms.

The atomic radius is the distance from the atomic nucleus to the outermost electron orbital in an atom. In general, the atomic radius decreases as we move from left-to-right in a period, and it increases when we go down a group. This is because in periods, the valence electrons are in the same outermost shell. The atomic number increases within the same period while moving from left to right, which in turn increases the effective nuclear charge. The increase in attractive forces reduces the atomic radius of elements. When we move down the group, the atomic radius increases due to the addition of a new shell.[5][6][7]

Nuclear charge and effective nuclear charge

Nuclear charge is defined as the number of protons in the nucleus of an element. Thus, from left-to-right of a period and top-to-bottom of a group, as the number of protons in the nucleus increases, the nuclear charge will also increase.[8] However, electrons of multi-electron atoms do not experience the entire nuclear charge due to shielding effects from the other electrons. In this case, the nuclear charge of atoms that experience this shielding is referred to as effective nuclear charge. Shielding increases as the number of an atom’s inner shells increases. So from left-to-right of a period, the effective nuclear charge will still increase. But, from top-to-bottom of a group, as the number of shells increases, the effective nuclear charge will decrease.[9]

Ionization energy

The ionization energy is the minimum amount of energy that an electron in a gaseous atom or ion has to absorb to come out of the influence of the attracting force of the nucleus. It is also referred to as ionization potential. The first ionization energy is the amount of energy that is required to remove the first electron from a neutral atom. The energy needed to remove the second electron from the neutral atom is called the second ionization energy and so on.[10][11][12]

As one moves from left-to-right across a period in the modern periodic table, the ionization energy increases as the nuclear charge increases and the atomic size decreases. The decrease in the atomic size results in a more potent force of attraction between the electrons and the nucleus. However, suppose one moves down in a group. In that case, the ionization energy decreases as atomic size increases due to adding a valence shell, thereby diminishing the nucleus's attraction to electrons.[13][14]

Ionization energy and electron affinity between two electronegative atoms (i.e., Chlorine and Bromine) decreases as the space between the valence shell and nucleus increases.

Electron affinity

The energy released when an electron is added to a neutral gaseous atom to form an anion is known as electron affinity.[15] Trend-wise, as one progresses from left to right across a period, the electron affinity will increase as the nuclear charge increases and the atomic size decreases resulting in a more potent force of attraction of the nucleus and the added electron. However, as one moves down in a group, electron affinity decreases because atomic size increases due to the addition of a valence shell, thereby weakening the nucleus's attraction to electrons. Although it may seem that fluorine should have the greatest electron affinity, its small size generates enough repulsion among the electrons, resulting in chlorine having the highest electron affinity in the halogen family.[16]

Electronegativity

Periodic variation of Pauling electronegativities

The tendency of an atom in a molecule to attract the shared pair of electrons towards itself is known as electronegativity. It is a dimensionless quantity because it is only a tendency.[17] The most commonly used scale to measure electronegativity was designed by Linus Pauling. The scale has been named the Pauling scale in his honour. According to this scale, fluorine is the most electronegative element, while cesium is the least electronegative element.[18]

Trend-wise, as one moves from left to right across a period in the modern periodic table, the electronegativity increases as the nuclear charge increases and the atomic size decreases. However, if one moves down in a group, the electronegativity decreases as atomic size increases due to the addition of a valence shell, thereby decreasing the atom's attraction to electrons.[19]

However, in group XIII (boron family), the electronegativity first decreases from boron to aluminium and then increases down the group. It is due to the fact that the atomic size increases as we move down the group, but at the same time the effective nuclear charge increases due to poor shielding of the inner d and f electrons. As a result, the force of attraction of the nucleus for the electrons increases and hence the electronegativity increases from aluminium to thallium.[20][21]

Valency

The valency of an element is the number of electrons that must be lost or gained by an atom to obtain a stable electron configuration. In simple terms, it is the measure of the combining capacity of an element to form chemical compounds. Electrons found in the outermost shell are generally known as valence electrons; the number of valence electrons determines the valency of an atom.[22][23]

Trend-wise, while moving from left to right across a period, the number of valence electrons of elements increases and varies between one and eight. But the valency of elements first increases from 1 to 4, and then it decreases to 0 as we reach the noble gases. However, as we move down in a group, the number of valence electrons generally does not change. Hence, in many cases the elements of a particular group have the same valency. However, this periodic trend is not always followed for heavier elements, especially for the f-block and the transition metals. These elements show variable valency as these elements have a d-orbital as the penultimate orbital and an s-orbital as the outermost orbital. The energies of these (n-1)d and ns orbitals (e.g., 4d and 5s) are relatively close.[24][25][26]

Metallic and non-metallic properties

Metallic properties generally increase down the groups, as decreasing attraction between the nuclei and outermost electrons causes these electrons to be more loosely bound and thus able to conduct heat and electricity. Across each period, from left to right, the increasing attraction between the nuclei and the outermost electrons causes the metallic character to decrease. In contrast, the nonmetallic character decreases down the groups and increases across the periods.[27][28]

Nucleophilicity and Electrophilicity

Electrophilicity refers to the tendency of an electron-deficient species, called an electrophile, to accept electrons.[29] Similarly, nucleophilicity is defined as the affinity of an electron-rich species, known as a nucleophile, to donate electrons to another species.[30] Trends in the periodic table are useful for predicting an element's nucleophilicity and electrophilicity. In general, nucleophilicity decreases as electronegativity increases, meaning that nucleophilicity decreases from left to right across the periodic table. On the other hand, electrophilicity generally increases as electronegativity increases, meaning that electrophilicity follows an increasing trend from left to right on the periodic table.[29] However, the specific molecular or chemical environment of the electrophile also influences electrophilicity. Therefore, electrophilicity cannot be accurately predicted based solely on periodic trends.

See also

References

  1. ^ Schrobilgen, Gary J. (2019). "Chemistry at the Edge of the Periodic Table: The Importance of Periodic Trends on the Discovery of the Noble Gases and the Development of Noble-Gas Chemistry". In Mingos, D. Michael P. (ed.). The Periodic Table I. Structure and Bonding. Vol. 181. pp. 157–196. doi:10.1007/430_2019_49. ISBN 978-3-030-40024-8.
  2. ^ Edwards, Peter P.; Egdell, Russell G.; Fenske, Dieter; Yao, Benzhen (18 September 2020). "The periodic law of the chemical elements: 'The new system of atomic weights which renders evident the analogies which exist between bodies'". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 378 (2180): 20190537. Bibcode:2020RSPTA.37890537E. doi:10.1098/rsta.2019.0537. PMC 7435142. PMID 32811357.
  3. ^ a b Egdell, Russell G.; Bruton, Elizabeth (2020-09-18). "Henry Moseley, X-ray spectroscopy and the periodic table". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 378 (2180): 20190302. Bibcode:2020RSPTA.37890302E. doi:10.1098/rsta.2019.0302. PMID 32811359.
  4. ^ Sztejnberg, Aleksander (2018). "Dmitri Ivanovich Mendeleev (1834 – 1907), Prominent Russian Scientist. References to His Great Scientific Achievements in the Literature between 1871 and 1917". Revista CENIC. Ciencias Químicas. 49 (1): 1–13.
  5. ^ "atomic and ionic radius". www.chemguide.co.uk. Retrieved 2022-06-30.
  6. ^ Huggins, Maurice L. (April 1922). "Atomic Radii. I". Physical Review. 19 (4): 346–353. Bibcode:1922PhRv...19..346H. doi:10.1103/PhysRev.19.346.
  7. ^ Rahm, Martin; Hoffmann, Roald; Ashcroft, N. W. (17 March 2017). "Corrigendum: Atomic and Ionic Radii of Elements 1–96". Chemistry – A European Journal. 23 (16): 4017. doi:10.1002/chem.201700610. PMID 28318129.
  8. ^ l'Annunziata, Michael F. (2016). "Basic Concepts and Definitions". Radioactivity. pp. 67–78. doi:10.1016/B978-0-444-63489-4.00002-2. ISBN 978-0-444-63489-4.
  9. ^ Stokłosa, A.; Zajęcki, J.; Kurek, S. S. (2004). "Effective nuclear charge of an ion" (PDF). Materials Science Poland. 22 (1): 35–45.
  10. ^ "7.4: Ionization Energy". Chemistry LibreTexts. 2014-11-18. Retrieved 2022-07-02.
  11. ^ Van De Walle, C.G. (2001). "Point Defects and Impurities in III-Nitride Bulk and Thin Film Heterostructures". Encyclopedia of Materials: Science and Technology. pp. 7125–7131. doi:10.1016/B0-08-043152-6/01262-6. ISBN 978-0-08-043152-9.
  12. ^ Abdu, Sadiq Garba; Onimisi, Muhammad Yusuf; Musa, Nasiru (January 2014). "Computation of the First and Second Ionization Energies of the First Ten Elements of the Periodic Table Using a Modified Hartree-Fock Approximation Code". American Journal of Condensed Matter Physics. 4 (3): 51–56.
  13. ^ "Ionization Energy Trend | Science Trends". sciencetrends.com. 2018-05-18. Retrieved 2022-07-02.
  14. ^ Zadeh, Dariush H. (2019-07-26). "Atomic shells according to ionization". Journal of Molecular Modeling. 25 (8): 251. doi:10.1007/s00894-019-4112-6. PMID 31346734.
  15. ^ "Electron affinity". Encyclopedic Dictionary of Polymers. 2007. p. 350. doi:10.1007/978-0-387-30160-0_4245. ISBN 978-0-387-31021-3.
  16. ^ "Electron Affinity Trend | Science Trends". sciencetrends.com. 2018-05-14. Retrieved 2022-07-02.
  17. ^ Chemistry (IUPAC), The International Union of Pure and Applied. "IUPAC - electronegativity (E01990)". goldbook.iupac.org. doi:10.1351/goldbook.e01990. Retrieved 2022-06-30.
  18. ^ Bickmore, Barry R.; Wander, Matthew C. F. (2018). "Electronegativity". Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. pp. 442–444. doi:10.1007/978-3-319-39312-4_222. ISBN 978-3-319-39311-7.
  19. ^ Mullay, John (1987). "Estimation of atomic and group electronegativities". Electronegativity. Structure and Bonding. Vol. 66. pp. 1–25. doi:10.1007/bfb0029834. ISBN 3-540-17740-X.
  20. ^ "21.1: The Elements of Group 13". Libretexts. 2013-11-26. Retrieved 2022-06-30.
  21. ^ Franz, Daniel; Inoue, Shigeyoshi (2016). "Advances in the development of complexes that contain a group 13 element chalcogen multiple bond". Dalton Transactions. 45 (23): 9385–9397. doi:10.1039/C6DT01413E. PMID 27216700.
  22. ^ "Valency". Dictionary of Gems and Gemology. 2009. p. 899. doi:10.1007/978-3-540-72816-0_22746. ISBN 978-3-540-72795-8.
  23. ^ "Valency". Encyclopedia of Immunotoxicology. 2016. p. 947. doi:10.1007/978-3-642-54596-2_201542. ISBN 978-3-642-54595-5.
  24. ^ Valency. Heidelberg Science Library. 1978. doi:10.1007/978-1-4612-6262-6. ISBN 978-0-387-90268-5.
  25. ^ O'Dwyer, M. F.; Kent, J. E.; Brown, R. D. (1978). "Many-electron Atoms". Valency. Heidelberg Science Library. pp. 59–86. doi:10.1007/978-1-4612-6262-6_4. ISBN 978-0-387-90268-5.
  26. ^ Gopinathan, M. S.; Jug, Karl (September 1983). "Valency. I. A quantum chemical definition and properties". Theoretica Chimica Acta. 63 (6): 497–509. doi:10.1007/BF02394809.
  27. ^ Daw, Murray S.; Foiles, Stephen M.; Baskes, Michael I. (March 1993). "The embedded-atom method: a review of theory and applications". Materials Science Reports. 9 (7–8): 251–310. doi:10.1016/0920-2307(93)90001-U.
  28. ^ "C9.1 – Periodic Trends". IGCSE AID. 2018-03-05. Retrieved 2022-07-02.
  29. ^ a b Nazmul, Islam; Ghosh, Dulal C (February 17, 2012). "On the Electrophilic Character of Molecules Through Its Relation with Electronegativity and Chemical Hardness". International Journal of Molecular Sciences. 13 (2): 2160–2175. doi:10.3390/ijms13022160. PMC 3292014. PMID 22408445.
  30. ^ Savin, Kenneth A. (2014). "Introduction—Molecular Structure and Reactivity". Writing Reaction Mechanisms in Organic Chemistry. pp. 1–53. doi:10.1016/B978-0-12-411475-3.00001-4. ISBN 978-0-12-411475-3.

Further reading

Read other articles:

Mikkel Diskerud Diskerud pada November 2014Informasi pribadiNama lengkap Mikkel Morgenstar Pålssønn Diskerud[1]Tanggal lahir 2 Oktober 1990 (umur 33)Tempat lahir Oslo, NorwegiaTinggi 1,84 m (6 ft 0 in)Posisi bermain GelandangInformasi klubKlub saat ini RosenborgNomor 42Karier junior2005–2008 StabækKarier senior*Tahun Tim Tampil (Gol)2008–2012 Stabæk 81 (10)2012 → Gent (pinjaman) 6 (0)2012– Rosenborg 43 (4)Tim nasional‡2008 Norwegia U-18 1 (0)2008 Nor...

 

Blurred LinesLagu oleh Robin Thicke featuring T.I. dan Pharrell Williamsdari album Blurred LinesDirilis26 Maret 2013FormatCDdigital downloadMCDDirekam2012GenrediscosoulfunkDurasi4:25LabelStar TrakInterscopePenciptaRobin ThickePharrell WilliamsClifford Harris Jr.Marvin Gaye[1]ProduserPharrell WilliamsKronologi singel Love After War(2011) Blurred Lines For the Rest of My Life(2013) Kronologi singel T.I. We Still in This Bitch(2013) Blurred Lines(2013) Pour It Up (Remix)(2013) Blurr...

 

Demodex folliculorum Klasifikasi ilmiah Genus: Demodex Spesies: folliculorum Sinonim[1] Acarus folliculorum Simon, 1842 Demodex folliculorum merupakan tungau mikroskopis yang hanya dapat hidup di kulit manusia.[2][3][4][5] Referensi ^ Simon, Gustav (1842). Ueber eine in den kranken und normalen Haarsäcken des Menschen lebende Milbe [About a mite that lives in the diseased and normal hair sacs of humans]. Archiv für Anatomie, Physiologie und W...

New Zealand footballer Katie Bowen Bowen playing for New Zealand in 2017Personal informationFull name Kate Elizabeth Bowen[1]Date of birth (1994-04-15) 15 April 1994 (age 29)[1]Place of birth Auckland, New Zealand[2]Height 1.73 m (5 ft 8 in)[1]Position(s) Defensive midfielderTeam informationCurrent team InterNumber 3Youth career Glenfield RoversCollege careerYears Team Apps (Gls)2012–2015 North Carolina Tar Heels 66 (1)Senior career*Years ...

 

Hakim-hakim 5Kitab Hakim-hakim lengkap pada Kodeks Leningrad, dibuat tahun 1008.KitabKitab Hakim-hakimKategoriNevi'imBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen7← pasal 4 pasal 6 → Hakim-hakim 5 (disingkat Hak 5) adalah pasal kelima Kitab Hakim-hakim dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen.[1] Pasal ini berisi nyanyian Debora yang memuat catatan keadaan orang Israel setelah Yosua bin Nun mati,[2] di mana Allah membangkitkan ha...

 

6th season of top-tier Italian football Football league seasonItalian Football ChampionshipSeason1902–03ChampionsGenoa5th title← 1902 1904 → The 1903 Italian Football Championship season was won by Genoa. Qualifications Team 1  Score  Team 2 Juventus 5-0 FBC Torinese Juventus 2-1 Audace Torino Juventus 7-1 Andrea Doria Semifinal Team 1  Score  Team 2 Milan 0-2 Juventus Final Played on 13 April Team 1  Score  Team 2 Genoa 3-0 Juventus References and sources ...

Canadian university basketball championship 2025 U Sports Men's Basketball ChampionshipSeason2023-25TeamsEightFinals siteDoug Mitchell Thunderbird Sports CentreUBC War Memorial GymnasiumVancouver, British ColumbiaTelevisionCBC[1] ← 2024 Men's Final 8 Basketball Tournament 2026 → The 2025 U Sports Men's Final 8 Basketball Tournament is scheduled to be held March 13–16, 2025, in Vancouver, British Columbia, to determine a national champion for the 2024–25 U Sports men's basketba...

 

American knife manufacturing corporation Chris Reeve KnivesCompany typeCorporationIndustryManufacturingFoundedBoise, ID (1993; 31 years ago (1993))FounderChris ReeveHeadquartersBoise, ID, United StatesKey peopleChris Reeve, Anne Reeve, Timothy ReeveProductsKnivesNumber of employees43Websitewww.chrisreeve.com Chris Reeve Knives is an American knife manufacturing corporation with international sales and distribution headquartered in Boise, Idaho, that designs, develops, and se...

 

Polish economist and diplomat (1904–1965) Oskar R. LangeOskar LangeBorn27 July 1904Tomaszów Mazowiecki, Congress PolandDied2 October 1965(1965-10-02) (aged 61)London, United KingdomNationalityPolishEducationUniversity of KrakówAcademic careerFieldPolitical economy, SociocyberneticsSchool ortraditionNeo-Marxian economics[1]Influences Marx Pareto Walras Mises ContributionsLange modelMarket socialismTheorems of welfare economics Part of a series onSocialism HistoryOutline D...

Russin Russin vu depuis Dardagny. Armoiries Drapeau Administration Pays Suisse Canton Genève Communes limitrophes Satigny, Aire-la-Ville, Cartigny, Avully, Dardagny Maire Mandat Olivier Favre (PLR) 2020-2025 NPA 1281 No OFS 6637 Démographie Gentilé Russinois Population permanente 536 hab. (31 décembre 2022) Densité 109 hab./km2 Langue Français Géographie Coordonnées 46° 11′ 15″ nord, 6° 00′ 47″ est Altitude 400 mMin. 349...

 

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Anggota Makuya mengunjungi Israel Gereja Makuya (幕 屋code: ja is deprecated ), berpusat di Tokyo Bible Seminary, adalah sebuah gereja gerakan k...

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

Voce principale: Sportverein Stuttgarter Kickers. Sportverein Stuttgarter KickersStagione 1985-1986Sport calcio Squadra Kickers Stoccarda Allenatore Dieter Renner 2. Bundesliga6º posto Coppa di GermaniaPrimo turno Maggiori presenzeCampionato: Cimander (38)Totale: Cimander (40) Miglior marcatoreCampionato: Merkle (15)Totale: Merkle (15) StadioKickers-Stadion Maggior numero di spettatori18 000 vs. Osnabrück Minor numero di spettatori2 200 vs. Eintracht Braunschweig Media spett...

 

Artikel ini menggunakan bahan sumber yang berasal dari blog atau situs pribadi yang dapat tidak sesuai dengan kebijakan pemastian dan sumber tepercaya Wikipedia. Silakan bantu perbaiki dengan mengganti sumber-sumber tersebut dengan mengutip ke sumber yang independen, netral, dan pihak ketiga. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Franky SupriyantoLahir1978Jepara, IndonesiaPekerjaan(mantan) Bhikkhu, penceramah, motivator, penulis Franky Supriyanto, sebelumnya dike...

Chinese computer scientist He Jifeng何积丰Prof. Jifeng He speaking at the BCS London office in 2018BornAugust 1943 (age 80)Shanghai, ChinaNationalityChineseAlma materFudan UniversityKnown forUnifying Theories of ProgrammingScientific careerFieldsComputer science, formal methodsInstitutionsEast China Normal UniversityUniversity of OxfordShanghai Jiao Tong UniversityUnited Nations UniversityTongji University Websitewww.jfai-sh.com In this Chinese name, the family name is ...

 

  هذه المقالة عن أبو إسحاق الشيرازي. لمعانٍ أخرى، طالع الشيرازي. أبو إسحاق الشيرازي معلومات شخصية الميلاد 1003فيروز آباد الوفاة 1083بغداد الجنسية  الدولة العباسية الدولة السلجوقية الحياة العملية تعلم لدى أبو بكر الباقلاني[1]،  وأبو حاتم القزويني  التلامذة الم...

 

English computer scientist (1912–1954) Turing redirects here. For other uses, see Turing (disambiguation). Alan TuringOBE FRSTuring in 1936BornAlan Mathison Turing(1912-06-23)23 June 1912Maida Vale, London, EnglandDied7 June 1954(1954-06-07) (aged 41)Wilmslow, Cheshire, EnglandCause of deathCyanide poisoning as an act of suicide[note 1]Alma mater University of Cambridge (BA, MA) Princeton University (PhD) Known for Cryptanalysis of the Enigma Turing's proof T...

جزء من سلسلة مقالات حولالحقوق النسوية المرأة والأنثويةامرأة . أنوثة التاريخالاجتماعي: تاريخ المرأة . تاريخ نسوي . تاريخ الحركة النسوية . الجدول الزمني لحقوق المرأة حق الاقتراع: تصويت النساء . الجدول الزمني . نيوزيلندا . المملكة المتحدة . الولايات المتحدة موجات: الأولى . الثان...

 

Cet article est une ébauche concernant une localité croate. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Slavonski Brod Héraldique Administration Pays Croatie Comitat Brod-Posavina Maire Mirko Duspara[1] HSP Code postal 35000 Indicatif téléphonique international +(385) Indicatif téléphonique local (0) 35 Démographie Population 53 531 hab. (2011[2]) Densité 989 hab./km2 Population munic...