Pearls in Graph Theory

Pearls in Graph Theory: A Comprehensive Introduction
AuthorNora Hartsfield and Gerhard Ringel
Subjectgraph theory
GenreTextbook
PublisherAcademic Press
Publication date
1990

Pearls in Graph Theory: A Comprehensive Introduction is an undergraduate-level textbook on graph theory by Nora Hartsfield and Gerhard Ringel. It was published in 1990 by Academic Press[1][2][3] with a revised edition in 1994[4] and a paperback reprint of the revised edition by Dover Books in 2003.[5] The Basic Library List Committee of the Mathematical Association of America has suggested its inclusion in undergraduate mathematics libraries.[5]

Topics

The "pearls" of the title include theorems, proofs, problems, and examples in graph theory. The book has ten chapters; after an introductory chapter on basic definitions, the remaining chapters material on graph coloring; Hamiltonian cycles and Euler tours; extremal graph theory; subgraph counting problems including connections to permutations, derangements, and Cayley's formula; graph labelings; planar graphs, the four color theorem, and the circle packing theorem; near-planar graphs; and graph embedding on topological surfaces.[4][5]

The book also includes several unsolved problems such as the Oberwolfach problem on covering complete graphs by cycles, the characterization of magic graphs, and Ringel's Earth–Moon problem on coloring biplanar graphs.[3]

Despite its subtitle "A comprehensive introduction", the book is short and its selection of topics reflects author Ringel's personal interests.[1][5]. Important topics in graph theory that are not covered[1][4]include the symmetries of graphs, cliques, connections between graphs and linear algebra including adjacency matrices, algebraic graph theory and spectral graph theory, connectivity of a graph (or even biconnected components), Hall's marriage theorem, line graphs, interval graphs, and the theory of tournaments. There is also only one chapter of coverage on algorithms and real-world applications of graph theory.[1][4][5] Also, the book omits "difficult or long proofs".[2][5]

Audience and reception

The book is written as a lower-level undergraduate textbook and recommends that students using it have previously taken a course in discrete mathematics. Nevertheless, it can be read and understood by students with only a high school background in mathematics. Reviewer L. W. Beineke writes that the variety of levels of the exercises is one of the strengths of the book,[4] and reviewer John S. Maybee writes that they are "extensive" and provide interesting connections to additional topics;[1] however, reviewer J. Sedláček criticizes them as "routine".[2]

Although several reviewers complained about the book's spotty or missing coverage of important topics,[1][4][5] reviewer Joan Hutchinson praised its choice of topics as "refreshingly different" and noted that, among many previous texts on graph theory, none had as much depth of coverage of topological graph theory.[3] Other reviewer complaints include a misattributed example,[2] a bad definition of the components of a graph that failed to apply to graphs with one component,[5] and a proof of the five-color theorem that only applies to special planar maps instead of all planar graphs.[3]

Despite these complaints, Beineke writes that, as an undergraduate text, "this book has much to offer".[4] Maybee writes that the book was "a joy to read", provided better depth of coverage on some topics than previous graph theory texts, and would be helpful reading for "many graph theorists".[1] Hutchinson praises it as providing "a splendid, enticingly elementary yet comprehensive introduction to topological graph theory".[3]

References

  1. ^ a b c d e f g "Review of Pearls in Graph Theory (1st ed.)", SIAM Review, 33 (4): 664–665, December 1991, JSTOR 2031030
  2. ^ a b c d Sedláček, J., "Review of Pearls in Graph Theory (1st ed.)", zbMATH, Zbl 0703.05001
  3. ^ a b c d e Hutchinson, Joan P. (November 1991), "Review of Pearls in Graph Theory (revised ed.)", American Mathematical Monthly, 98 (9): 873–875, doi:10.2307/2324291, JSTOR 2324291
  4. ^ a b c d e f g Beineke, L. W. (March 1996), "Review of Pearls in Graph Theory (revised ed.)", SIAM Review, 38 (1): 159, doi:10.1137/1038017, JSTOR 2132980; see also Beineke's shorter review in MR1282717
  5. ^ a b c d e f g h Hunacek, Mark (September 2015), "Review of Pearls in Graph Theory (Dover ed.)", MAA Reviews, Mathematical Association of America

Read other articles:

Battaglia di Messinaparte della prima guerra punicaData264 a.C. LuogoSicilia, EsitoVittoria di Roma SchieramentiRepubblica romanaCartagineSiracusa ComandantiAppio Claudio Caudice,Manio Otacilio Crasso,Manio Valerio Massimo MessallaAnnone,Gerone II Effettivi9.000Ignoti PerditeIgnoteIgnote Voci di battaglie presenti su Wikipedia Manuale V · D · MPrima guerra punicaMessina – Agrigento – Isole Lipari – Milazzo – Sulci – Tindari – Capo Ecnomo – Adys – Tunisi �...

Untuk salah satu marga Batak Toba, lihat Pasaribu.Rumah Tinggal Pasaribu. Rumah Tinggal Pasaribu adalah bangunan cagar budaya yang berada di Jalan Diponegoro No. 5, Kelurahan Salatiga, Kecamatan Sidorejo, Kota Salatiga, Provinsi Jawa Tengah. Lihat pula Gedung Pakuwon Istana Djoen Eng Rumah Dinas Wali Kota Salatiga Rumah Tinggal Hasmo Sugijarto Rumah Tinggal Notosoegondo Toko Aneka Jaya Tugu Jam Tamansari Daftar pustaka Buku Harnoko, Darto, dkk (2008). Salatiga dalam Lintasan Sejarah. Salatiga...

Vranje Врање Héraldique Vue générale de Vranje Administration Pays Serbie Province Serbie centrale Région Južno Pomoravlje District Pčinja Ville Vranje Code postal 17 500 Démographie Population 54 456 hab. (2011) Géographie Coordonnées 42° 33′ 05″ nord, 21° 54′ 01″ est Altitude 173 m Localisation Géolocalisation sur la carte : Serbie Vranje Géolocalisation sur la carte : Serbie Vranje modifier  Municipa...

Catedral de Puerto Argentino/Stanley La Parroquia de las Islas Malvinas (en inglés: Parish of the Falkland Islands) - anteriormente una diócesis de la Iglesia de Inglaterra, conocida como la Diócesis de las Islas Malvinas - es una iglesia extra-provincial en la Comunión anglicana encabezada por el obispo de las Islas Malvinas. Hasta bien entrado el siglo XX el obispo de las islas tenía autoridad episcopal sobre toda la América del Sur, hasta que el poder pasó al obispo de Buenos A...

Auf dieser Seite sind die Baudenkmäler in der niederbayerischen Gemeinde Aicha vorm Wald zusammengestellt. Diese Tabelle ist eine Teilliste der Liste der Baudenkmäler in Bayern. Grundlage ist die Bayerische Denkmalliste, die auf Basis des Bayerischen Denkmalschutzgesetzes vom 1. Oktober 1973 erstmals erstellt wurde und seither durch das Bayerische Landesamt für Denkmalpflege geführt wird. Die folgenden Angaben ersetzen nicht die rechtsverbindliche Auskunft der Denkmalschutzbehörde. ...

Este artigo não cita fontes confiáveis. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Março de 2020) SÉCULOS: Século XIV — Século XV — Século XVI DÉCADAS: 1440 • 1450 • 1460 • 1470 • 1480 • 1490 • 1500 • 1510 • 1520 • 1530 • 1540 ANOS: 1489 • 1490 • 1491 • 1492 • 1493 • 1494 • 1495 • 14...

Partai Kataeb Arab: الكتائب اللبنانية Prancis: Phalanges libanaisesPresidenSamy GemayelPendiriPierre GemayelDibentuk1 Agustus 1936; 87 tahun lalu (1936-08-01)Kantor pusatBeirut, LibanonSayap paramiliterPasukan Regulatori Kataeb (1975–80)IdeologiFalangisme (pada masa lalu),Konservatisme nasional,Demokrasi Kristen,Foenisianisme,[1]FederalismePosisi politikSayap kananAgamaResminya sekulerUmumnya KristenAfiliasi nasionalAliansi 14 MaretAfiliasi internas...

III. Fliegerkorps País Alemanha Nazi Corporação  Luftwaffe Criação 1939 História Guerras/batalhas Segunda Guerra Mundial O III. Fliegerkorps foi um corpo da Luftwaffe que atuou durante a Segunda Guerra Mundial. Formado em Novembro de 1939 a parir do 3. Flieger-Division, este corpo duraria pouco tempo pois rapidamente ficou subordinado à Luftflotte 4 e foi transformado numa formação especial.[1] Referências ↑ «Lexikon der Wehrmacht - Fliegerkorps». www.lexikon-der-wehrmacht....

Đối với các định nghĩa khác, xem Đồng Sơn. Đồng Sơn Phường Phường Đồng Sơn Hành chínhQuốc gia Việt NamVùngBắc Trung BộTỉnhQuảng BìnhThành phốĐồng HớiThành lập1998[1]Địa lýTọa độ: 17°25′24″B 106°33′0″Đ / 17,42333°B 106,55°Đ / 17.42333; 106.55000 Bản đồ phường Đồng Sơn Đồng Sơn Vị trí phường Đồng Sơn trên bản đồ Việt Nam Diện tích19,55 km²Dân số...

Questa voce o sezione sull'argomento storia antica non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Questa voce è parte della serieEtà dei metalli ↑ Età della pietra Età del rame Metallurgia, Domesticazione del cavallo, ruota Cultura del vaso campaniforme Età del bronzo Europa Cultura di Unetice Cult...

Bài này viết về phim năm 2010. Đối với phim năm 2020, xem Đảo kinh hoàng (phim 2020). Đảo kinh hoàng Áp phích chiếu rạp của phim tại Việt NamĐạo diễnMartin ScorseseSản xuất Mike Medavoy Arnold W. Messer Bradley J. Fischer Martin Scorsese Kịch bảnLaeta KalogridisDựa trênĐảo kinh hoàngcủa Dennis LehaneDiễn viên Leonardo DiCaprio Mark Ruffalo Ben Kingsley Michelle Williams Emily Mortimer Patricia Clarkson Max von Sydow Quay phimRober...

Anikonisme adalah praktik atau keyakinan dalam menghindari atau mengucilkan gambar makhluk Tuhan, nabi, atau tokoh agama lainnya yang dihormati, atau dalam manifestasi yang berbeda, setiap manusia atau makhluk hidup. Istilah aniconic dapat digunakan untuk mendeskripsikan ketiadaan representasi grafis dalam sistem keyakinan tertentu, terlepas dari apakah adanya perintah untuk melarangnya. Kata itu sendiri berasal dari bahasa Yunani εικων 'gambar' dengan awalan negatif an- (alfabet privati...

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Syarwan Hamid – berita · surat kabar · buku · cendekiawan · JSTOR Syarwan HamidMenteri Dalam Negeri Indonesia ke–22Masa jabatan23 Mei 1998 – 27 September 1999PresidenB. J. HabibiePendahuluR. ...

Maqueta del templo de Afaya en la Gliptoteca de Múnich. El templo de Afaya o de Afea (en griego Ἀφαία, a veces transcrito erróneamente como Afaia),[1]​ de orden dórico, es uno de los tres templos del triángulo sagrado del Partenón, Sunión y Afaya. Está situado en la isla argosarónica de Egina. Fue durante mucho tiempo considerado como el templo de Zeus Panhelénico, después de Atenea (aún a veces se le llama «Atenea Afaya»). Data del final del siglo VI a. C. ...

Lift kursi di Bad Hofgastein, Austria Lift kursi (bahasa Inggris: Chairlift) adalah sebuah sarana transportasi penumpang yang terdiri dari kabel baja yang memutari dua buah terminal. Sarana ini umum terdapat di lokasi ski, taman hiburan dan di berbagai lokasi wisata lainnya. Pranala luar Wikimedia Commons memiliki media mengenai Chairlift. Artikel bertopik transportasi ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs

Sherlock Holmes story told from his fictional retirement The Adventure of the Lion's ManeShort story by Arthur Conan Doyle1926 illustration by Frederic Dorr Steele in LibertyPublicationPublication date1926ChronologySeriesThe Case-Book of Sherlock Holmes  The Blanched Soldier   The Retired Colourman The Adventure of the Lion's Mane (1926), one of the 56 Sherlock Holmes short stories written by British author Sir Arthur Conan Doyle, is one of 12 stories in the cycle collected as The C...

American politician (1871–1937) Newton BakerBaker c. 1910s47th United States Secretary of WarIn officeMarch 9, 1916 – March 4, 1921PresidentWoodrow WilsonPreceded byLindley GarrisonSucceeded byJohn W. Weeks37th Mayor of ClevelandIn office1912–1915Preceded byHerman C. BaehrSucceeded byHarry L. Davis Personal detailsBornNewton Diehl Baker Jr.(1871-12-03)December 3, 1871Martinsburg, West Virginia, U.S.DiedDecember 25, 1937(1937-12-25) (aged 66)Shaker Heights, Ohio, U.S....

American novelist and screenwriter (born 1970) Not to be confused with Nick Saban. Nick SaganSagan in 2018BornNicholas Julian Zapata Sagan (1970-09-16) September 16, 1970 (age 53)Boston, Massachusetts, U.S.EducationUniversity of California, Los AngelesOccupationsNovelistscreenwriterNotable workIdlewildEdenbornEverfreeParentsCarl Sagan (father)Linda Salzman (mother) Nicholas Julian Zapata Sagan[1] (born September 16, 1970) is an American novelist and screenwriter. He is the author...

See also: Meeting place (disambiguation) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Meeting point – news · newspapers · books · scholar · JSTOR (April 2007) (Learn how and when to remove this template message) ISO standardized pictogram for a fire safety assembly point A signed meeting point at the airp...

United States historic placeAllendale PlantationU.S. National Register of Historic Places Allendale Plantation (2012)Show map of LouisianaShow map of the United StatesLocationPort Allen, Louisiana, U.S.Area13 acres (5.3 ha)Builtc. 1855NRHP reference No.96001263[1]Added to NRHPNovember 1, 1996 Henry Watkins Allen (between 1861 and 1865) Allendale Plantation, also known as the Allendale Plantation Historic District, is a historic site and complex of buildings that w...