Modus tollens

Modus tollens
Type
Field
Statement implies . is false. Therefore, must also be false.
Symbolic statement [1]

In propositional logic, modus tollens (/ˈmdəs ˈtɒlɛnz/) (MT), also known as modus tollendo tollens (Latin for "method of removing by taking away")[2] and denying the consequent,[3] is a deductive argument form and a rule of inference. Modus tollens is a mixed hypothetical syllogism that takes the form of "If P, then Q. Not Q. Therefore, not P." It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument.

The history of the inference rule modus tollens goes back to antiquity.[4] The first to explicitly describe the argument form modus tollens was Theophrastus.[5]

Modus tollens is closely related to modus ponens. There are two similar, but invalid, forms of argument: affirming the consequent and denying the antecedent. See also contraposition and proof by contrapositive.

Explanation

The form of a modus tollens argument is a mixed hypothetical syllogism, with two premises and a conclusion:

If P, then Q.
Not Q.
Therefore, not P.

The first premise is a conditional ("if-then") claim, such as P implies Q. The second premise is an assertion that Q, the consequent of the conditional claim, is not the case. From these two premises it can be logically concluded that P, the antecedent of the conditional claim, is also not the case.

For example:

If the dog detects an intruder, the dog will bark.
The dog did not bark.
Therefore, no intruder was detected by the dog.

Supposing that the premises are both true (the dog will bark if it detects an intruder, and does indeed not bark), it follows that no intruder has been detected. This is a valid argument since it is not possible for the conclusion to be false if the premises are true. (It is conceivable that there may have been an intruder that the dog did not detect, but that does not invalidate the argument; the first premise is "if the dog detects an intruder". The thing of importance is that the dog detects or does not detect an intruder, not whether there is one.)

Example 1:

If I am the burglar, then I can crack a safe.
I cannot crack a safe.
Therefore, I am not the burglar.

Example 2:

If Rex is a chicken, then he is a bird.
Rex is not a bird.
Therefore, Rex is not a chicken.

Relation to modus ponens

Every use of modus tollens can be converted to a use of modus ponens and one use of transposition to the premise which is a material implication. For example:

If P, then Q. (premise – material implication)
If not Q, then not P. (derived by transposition)
Not Q . (premise)
Therefore, not P. (derived by modus ponens)

Likewise, every use of modus ponens can be converted to a use of modus tollens and transposition.

Formal notation

The modus tollens rule can be stated formally as:

where stands for the statement "P implies Q". stands for "it is not the case that Q" (or in brief "not Q"). Then, whenever "" and "" each appear by themselves as a line of a proof, then "" can validly be placed on a subsequent line.

The modus tollens rule may be written in sequent notation:

where is a metalogical symbol meaning that is a syntactic consequence of and in some logical system;

or as the statement of a functional tautology or theorem of propositional logic:

where and are propositions expressed in some formal system;

or including assumptions:

though since the rule does not change the set of assumptions, this is not strictly necessary.

More complex rewritings involving modus tollens are often seen, for instance in set theory:

("P is a subset of Q. x is not in Q. Therefore, x is not in P.")

Also in first-order predicate logic:

("For all x if x is P then x is Q. y is not Q. Therefore, y is not P.")

Strictly speaking these are not instances of modus tollens, but they may be derived from modus tollens using a few extra steps.

Justification via truth table

The validity of modus tollens can be clearly demonstrated through a truth table.

p q p → q
T T T
T F F
F T T
F F T

In instances of modus tollens we assume as premises that p → q is true and q is false. There is only one line of the truth table—the fourth line—which satisfies these two conditions. In this line, p is false. Therefore, in every instance in which p → q is true and q is false, p must also be false.

Formal proof

Via disjunctive syllogism

Step Proposition Derivation
1 Given
2 Given
3 Material implication (1)
4 Disjunctive syllogism (3,2)

Via reductio ad absurdum

Step Proposition Derivation
1 Given
2 Given
3 Assumption
4 Modus ponens (1,3)
5 Conjunction introduction (2,4)
6 Reductio ad absurdum (3,5)
7 Conditional introduction (2,6)

Via contraposition

Step Proposition Derivation
1 Given
2 Given
3 Contraposition (1)
4 Modus ponens (2,3)

Correspondence to other mathematical frameworks

Probability calculus

Modus tollens represents an instance of the law of total probability combined with Bayes' theorem expressed as:

where the conditionals and are obtained with (the extended form of) Bayes' theorem expressed as:

and

In the equations above denotes the probability of , and denotes the base rate (aka. prior probability) of . The conditional probability generalizes the logical statement , i.e. in addition to assigning TRUE or FALSE we can also assign any probability to the statement. Assume that is equivalent to being TRUE, and that is equivalent to being FALSE. It is then easy to see that when and . This is because so that in the last equation. Therefore, the product terms in the first equation always have a zero factor so that which is equivalent to being FALSE. Hence, the law of total probability combined with Bayes' theorem represents a generalization of modus tollens.[6]

Subjective logic

Modus tollens represents an instance of the abduction operator in subjective logic expressed as:

where denotes the subjective opinion about , and denotes a pair of binomial conditional opinions, as expressed by source . The parameter denotes the base rate (aka. the prior probability) of . The abduced marginal opinion on is denoted . The conditional opinion generalizes the logical statement , i.e. in addition to assigning TRUE or FALSE the source can assign any subjective opinion to the statement. The case where is an absolute TRUE opinion is equivalent to source saying that is TRUE, and the case where is an absolute FALSE opinion is equivalent to source saying that is FALSE. The abduction operator of subjective logic produces an absolute FALSE abduced opinion when the conditional opinion is absolute TRUE and the consequent opinion is absolute FALSE. Hence, subjective logic abduction represents a generalization of both modus tollens and of the Law of total probability combined with Bayes' theorem.[7]

See also

Notes

  1. ^ Matthew C. Harris. "Denying the antecedent". Khan academy.
  2. ^ Stone, Jon R. (1996). Latin for the Illiterati: Exorcizing the Ghosts of a Dead Language. London: Routledge. p. 60. ISBN 978-0-415-91775-9.
  3. ^ Sanford, David Hawley (2003). If P, Then Q: Conditionals and the Foundations of Reasoning (2nd ed.). London: Routledge. p. 39. ISBN 978-0-415-28368-7. [Modus] tollens is always an abbreviation for modus tollendo tollens, the mood that by denying denies.
  4. ^ Susanne Bobzien (2002). "The Development of Modus Ponens in Antiquity", Phronesis 47.
  5. ^ "Ancient Logic: Forerunners of Modus Ponens and Modus Tollens". Stanford Encyclopedia of Philosophy.
  6. ^ Audun Jøsang 2016:p.2
  7. ^ Audun Jøsang 2016:p.92

Sources

Read other articles:

System of flowering plant classification The Cronquist system is a taxonomic classification system of flowering plants. It was developed by Arthur Cronquist in a series of monographs and texts, including The Evolution and Classification of Flowering Plants (1968; 2nd edition, 1988) and An Integrated System of Classification of Flowering Plants (1981) (see Bibliography). Cronquist's system places flowering plants into two broad classes, Magnoliopsida (dicotyledons) and Liliopsida (monocotyledo...

 

HuelvaMunisipalitasQueen Victoria district, English style suburb BenderaLambang kebesaranMotto: Portus Maris et Terrae CustodiaLokasi HuelvaNegara SpainKomunitas otonom AndalusiaProvinsiHuelvaComarcaComarca metropolitana de HuelvaDibentukAbad ke-10 SMPemerintahan • AlcaldePedro Rodríguez González (PP)Luas • Total149 km2 (58 sq mi)Ketinggian54 m (177 ft)Populasi (2010) • Total149.410 • Kepadatan1,000...

 

Turki padaOlimpiade Musim Panas 2020Kode IOCTURKONKomite Olimpiade TurkiSitus webolimpiyat.org.tr (dalam bahasa Inggris)Penampilan pada Olimpiade Musim Panas 2020 di TokyoPeserta108 dalam 18 cabang olahragaPembawa bendera (pembukaan)Merve TuncelBerke SakaPembawa bendera (penutupan)Busenaz SürmeneliMedaliPeringkat ke-35 2 2 9 Total 13 Penampilan pada Olimpiade Musim Panas (ringkasan)19081912192019241928193219361948195219561960196419681972197619801984198819921996200020...

Duke of York's Own Loyal Suffolk HussarsLoyal Suffolk Hussars badge and service capActive1793–presentCountry Kingdom of Great Britain (1793–1800) United Kingdom (1801–present)Branch Territorial ArmyTypeYeomanrySizeRegimentPart ofCavalry (First World War)Royal Artillery (Second World War)Army Air Corps (Present)Motto(s)CONSTANTIA LEVANDI (Steadfast in support)Battle honoursThe Great War:Somme 1918, Bapaume 1918, Hindenberg Line, Epehy, Pursuit to Mons, France & F...

 

Sesuvium Sesuvium portulacastrum Klasifikasi ilmiah Kerajaan: Plantae (tanpa takson): Tracheophyta (tanpa takson): Angiospermae (tanpa takson): Eudikotil (tanpa takson): Core Eudikotil Ordo: Caryophyllales Famili: Aizoaceae Subfamili: Sesuvioideae Genus: SesuviumL. Species Lihat teks. Sinonim Diplochonium Fenzl Psammanthe Hance Pyxipoma Fenzl[1] Sesuvium adalah genus tumbuhan berbunga yang termasuk dalam famili Aizoaceae. Spesies yang termasuk dalam genus ini adalah:[2] Sesuv...

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

  「俄亥俄」重定向至此。关于其他用法,请见「俄亥俄 (消歧义)」。 俄亥俄州 美國联邦州State of Ohio 州旗州徽綽號:七葉果之州地图中高亮部分为俄亥俄州坐标:38°27'N-41°58'N, 80°32'W-84°49'W国家 美國加入聯邦1803年3月1日,在1953年8月7日追溯頒定(第17个加入联邦)首府哥倫布(及最大城市)政府 • 州长(英语:List of Governors of {{{Name}}}]]) •&...

 

City in Ozaukee County, Wisconsin This article is about the city. For the adjacent town, see Cedarburg (town), Wisconsin. City in Wisconsin, United StatesCity of Cedarburg, WisconsinCityCedarburg City Hall, located in the Washington Avenue Historic DistrictLocation of Cedarburg in Ozaukee County, Wisconsin.Coordinates: 43°17′18″N 87°59′15″W / 43.28833°N 87.98750°W / 43.28833; -87.98750Country United StatesState WisconsinCountyOzaukeeSettled1840sI...

 

Detail of Rencong script, a writing system found in central Sumatra, Indonesia.[1] The text reads (Voorhoeve's spelling): haku manangis ma / njaru ka'u ka'u di / saru tijada da / tang [hitu hadik sa], which is translated by Voorhoeve as: I am weeping, calling you; though called, you do not come (hitu adik sa- is the rest of 4th line.) Malay was first used in the first millennia known as Old Malay, a part of the Austronesian language family. Over a period of two millennia, Malay has u...

Gmina in Lower Silesian Voivodeship, PolandGmina Środa Śląska Środa Śląska CommuneGmina FlagCoat of armsCoordinates (Środa Śląska): 51°09′N 16°35′E / 51.150°N 16.583°E / 51.150; 16.583Country PolandVoivodeshipLower SilesianCountyŚroda ŚląskaSeatŚroda ŚląskaSołectwosBrodno, Bukówek, Cesarzowice, Chwalimierz, Ciechów, Gozdawa, Jastrzębce, Jugowiec, Juszczyn, Kobylniki, Komorniki, Kryniczno, Kulin, Lipnica, Michałów, Ogrodnica, Pęczk...

 

Koridor Jembatan Kontinental Eurasia陆桥通道Peta Rute Koridor Jembatan Kontinental EurasiaIkhtisarJenisKereta kecepatan tinggiStatusBeroperasi sebagianLokasiJiangsu, Anhui, Henan, Shaanxi, Gansu, Qinghai, XinjiangTerminusLianyungang (direncanakan) XuzhouUrumqiOperasiOperatorKereta kecepatan tinggi TiongkokData teknisPanjang lintas3.422 km (2.126 mi) [1]Lebar sepur1.435 mm (4 ft 8+1⁄2 in) sepur standarElektrifikasi50 Hz 25,000 VKecepatan operasi2...

 

العلاقات التوفالية الليختنشتانية توفالو ليختنشتاين   توفالو   ليختنشتاين تعديل مصدري - تعديل   العلاقات التوفالية الليختنشتانية هي العلاقات الثنائية التي تجمع بين توفالو وليختنشتاين.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية �...

Species of plant This article is about the fruit. For other uses, see Tamarillo (disambiguation). Tamarillo Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Asterids Order: Solanales Family: Solanaceae Genus: Solanum Species: S. betaceum Binomial name Solanum betaceumCav. Synonyms[1] Cyphomandra betacea (Cav.) Sendtn. Cyphomandra crassifolia (Ortega) J.F. Macbr. Pionandra betacea (Cav.) Miers Solanum betacea Cav. Solanum cr...

 

President of Guatemala from 1898 to 1920 In this Spanish name, the first or paternal surname is Estrada and the second or maternal family name is Cabrera. Manuel José Estrada CabreraEstrada Cabrera in 191613th President of GuatemalaIn office8 February 1898 – 15 April 1920Preceded byJosé María ReinaSucceeded byCarlos Herrera10th Vice President of GuatemalaIn office28 April 1897 – 8 February 1898PresidentJosé María ReinaPreceded byManuel Morales TovarS...

 

Démographie de la Lituanie Évolution démographique de la Lituanie Dynamique Population 2 793 284 hab.(2018)[1] Évolution de la population −1,1 % (2018)[2],[3] Indice de fécondité 1,6 enfant par ♀[4](2018)[5] Taux de natalité 9,8 ‰ (2018)[6],[7] Taux de mortalité 14,8 ‰ (2018)[8],[9] Taux de mortalité infantile 3,8 ‰ (2018)[10] Âges Espérance de vie à la naissance 75,2 ans (2018)[11]Hommes : 69,9&...

German Empress and Queen of Prussia from 1888 to 1918 For the ship, see SS Augusta Victoria (1888). Not to be confused with Augusta Victoria of Hohenzollern. Augusta Victoria of Schleswig-HolsteinAugusta Victoria in 1888German Empress consortQueen consort of PrussiaTenure15 June 1888 – 9 November 1918Born(1858-10-22)22 October 1858Dolzig Palace, Brandenburg, Kingdom of Prussia(now Dłużek, Poland)Died11 April 1921(1921-04-11) (aged 62)Huis Doorn, Kingdom of the NetherlandsBurial19...

 

فلسفة سياسيةمعلومات عامةصنف فرعي من فلسفة جزء من الدراسات السياسيةpolitical theory and political philosophy (en) social and political philosophy (en) يمارسها فيلسوف سياسي تعديل - تعديل مصدري - تعديل ويكي بيانات الفلسفة السياسية، تُعرف أيضًا باسم النظرية السياسية، هي دراسة مواضيع مثل السياسة، والحرية، والعدا...

 

Series of tests assessing vision and pertaining to the eyes This article needs more reliable medical references for verification or relies too heavily on primary sources. Please review the contents of the article and add the appropriate references if you can. Unsourced or poorly sourced material may be challenged and removed. Find sources: Eye examination – news · newspapers · books · scholar · JSTOR (December 2021) Eye examinationTraditional Snellen c...

Indian politician Kailash Chandra MeghwalSpeaker of Rajasthan Legislative AssemblyIn office22 January 2014 – 15 January 2019Preceded byDeependra Singh ShekhawatSucceeded byC. P. JoshiConstituencyShahpura, (SC)Union Minister of State, Ministry of Social Justice and EmpowermentIn office2003-2004Prime MinisterAtal Bihari VajpayeeHome Minister, Government of RajasthanIn office1993 - 1998Member of Parliamentfor TonkIn office2001-2009Member of Parliament Lok sabhaIn office1989 to 1991Con...

 

Điều 48 của Hiến chương Quyền cơ bản của Liên minh châu Âu khẳng định quyền được suy đoán vô tội. Suy đoán vô tội hay giả định vô tội, là một trong những nguyên tắc cơ bản, được ứng dụng rộng rãi trong nền khoa học pháp lý hiện đại. Nội dung cốt lõi của nguyên tắc cho rằng mọi nghi can đều vô tội cho đến khi được chứng minh là có tội. Nguyên tắc này được áp dụng trong c...