Minimum description length

Minimum Description Length (MDL) is a model selection principle where the shortest description of the data is the best model. MDL methods learn through a data compression perspective and are sometimes described as mathematical applications of Occam's razor. The MDL principle can be extended to other forms of inductive inference and learning, for example to estimation and sequential prediction, without explicitly identifying a single model of the data.

MDL has its origins mostly in information theory and has been further developed within the general fields of statistics, theoretical computer science and machine learning, and more narrowly computational learning theory.

Historically, there are different, yet interrelated, usages of the definite noun phrase "the minimum description length principle" that vary in what is meant by description:

Overview

Selecting the minimum length description of the available data as the best model observes the principle identified as Occam's razor. Prior to the advent of computer programming, generating such descriptions was the intellectual labor of scientific theorists. It was far less formal than it has become in the computer age. If two scientists had a theoretic disagreement, they rarely could formally apply Occam's razor to choose between their theories. They would have different data sets and possibly different descriptive languages. Nevertheless, science advanced as Occam's razor was an informal guide in deciding which model was best.

With the advent of formal languages and computer programming Occam's razor was mathematically defined. Models of a given set of observations, encoded as bits of data, could be created in the form of computer programs that output that data. Occam's razor could then formally select the shortest program, measured in bits of this algorithmic information, as the best model.

To avoid confusion, note that there is nothing in the MDL principle that implies a machine produced the program embodying the model. It can be entirely the product of humans. The MDL principle applies regardless of whether the description to be run on a computer is the product of humans, machines or any combination thereof. The MDL principle requires only that the shortest description, when executed, produce the original data set without error.

Two-Part codes

The distinction in computer programs between programs and literal data applies to all formal descriptions and is sometimes referred to as "two parts" of a description. In statistical MDL learning, such a description is frequently called a two-part code.

MDL in machine learning

MDL applies in machine learning when algorithms (machines) generate descriptions. Learning occurs when an algorithm generates a shorter description of the same data set.

The theoretic minimum description length of a data set, called its Kolmogorov complexity, cannot, however, be computed. That is to say, even if by random chance an algorithm generates the shortest program of all that outputs the data set, an automated theorem prover cannot prove there is no shorter such program. Nevertheless, given two programs that output the dataset, the MDL principle selects the shorter of the two as embodying the best model.

Recent work on algorithmic MDL learning

Recent machine MDL learning of algorithmic, as opposed to statistical, data models have received increasing attention with increasing availability of data, computation resources and theoretic advances.[2][3] Approaches are informed by the burgeoning field of artificial general intelligence. Shortly before his death, Marvin Minsky came out strongly in favor of this line of research, saying:[4]

It seems to me that the most important discovery since Gödel was the discovery by Chaitin, Solomonoff and Kolmogorov of the concept called Algorithmic Probability which is a fundamental new theory of how to make predictions given a collection of experiences and this is a beautiful theory, everybody should learn it, but it’s got one problem, that is, that you cannot actually calculate what this theory predicts because it is too hard, it requires an infinite amount of work. However, it should be possible to make practical approximations to the Chaitin, Kolmogorov, Solomonoff theory that would make better predictions than anything we have today. Everybody should learn all about that and spend the rest of their lives working on it.

— Panel discussion on The Limits of Understanding, World Science Festival, NYC, Dec 14, 2014

Statistical MDL learning

Any set of data can be represented by a string of symbols from a finite (say, binary) alphabet.

[The MDL Principle] is based on the following insight: any regularity in a given set of data can be used to compress the data, i.e. to describe it using fewer symbols than needed to describe the data literally. (Grünwald, 2004)[5]

Based on this, in 1978, Jorma Rissanen published an MDL learning algorithm using the statistical notion of information rather than algorithmic information. Over the past 40 years this has developed into a rich theory of statistical and machine learning procedures with connections to Bayesian model selection and averaging, penalization methods such as Lasso and Ridge, and so on - Grünwald and Roos (2020)[6] give an introduction including all modern developments. Rissanen started out with this idea: all statistical learning is about finding regularities in data, and the best hypothesis to describe the regularities in data is also the one that is able to statistically compress the data most. Like other statistical methods, it can be used for learning the parameters of a model using some data. Usually though, standard statistical methods assume that the general form of a model is fixed. MDL's main strength is that it can also be used for selecting the general form of a model and its parameters. The quantity of interest (sometimes just a model, sometimes just parameters, sometimes both at the same time) is called a hypothesis. The basic idea is then to consider the (lossless) two-stage code that encodes data with length by first encoding a hypothesis in the set of considered hypotheses and then coding "with the help of" ; in the simplest context this just means "encoding the deviations of the data from the predictions made by :

The achieving this minimum is then viewed as the best explanation of data . As a simple example, take a regression problem: the data could consist of a sequence of points , the set could be the set of all polynomials from to . To describe a polynomial of degree (say) , one would first have to discretize the parameters to some precision; one would then have to describe this precision (a natural number); next, one would have to describe the degree (another natural number), and in the final step, one would have to describe parameters; the total length would be . One would then describe the points in using some fixed code for the x-values and then using a code for the deviations .

In practice, one often (but not always) uses a probabilistic model. For example, one associates each polynomial with the corresponding conditional distribution expressing that given , is normally distributed with mean and some variance which could either be fixed or added as a free parameter. Then the set of hypotheses reduces to the assumption of a linear[clarification needed] model, , with a polynomial.

Furthermore, one is often not directly interested in specific parameters values, but just, for example, the degree of the polynomial. In that case, one sets to be where each represents the hypothesis that the data is best described as a j-th degree polynomial. One then codes data given hypothesis using a one-part code designed such that, whenever some hypothesis fits the data well, the codelength is short. The design of such codes is called universal coding. There are various types of universal codes one could use, often giving similar lengths for long data sequences but differing for short ones. The 'best' (in the sense that it has a minimax optimality property) are the normalized maximum likelihood (NML) or Shtarkov codes. A quite useful class of codes are the Bayesian marginal likelihood codes. For exponential families of distributions, when Jeffreys prior is used and the parameter space is suitably restricted, these asymptotically coincide with the NML codes; this brings MDL theory in close contact with objective Bayes model selection, in which one also sometimes adopts Jeffreys' prior, albeit for different reasons. The MDL approach to model selection "gives a selection criterion formally identical to the BIC approach"[7] for large number of samples.

Example of Statistical MDL Learning

A coin is flipped 1000 times, and the numbers of heads and tails are recorded. Consider two model classes:

  • The first is a code that represents outcomes with a 0 for heads or a 1 for tails. This code represents the hypothesis that the coin is fair. The code length according to this code is always exactly 1000 bits.
  • The second consists of all codes that are efficient for a coin with some specific bias, representing the hypothesis that the coin is not fair. Say that we observe 510 heads and 490 tails. Then the code length according to the best code in the second model class is shorter than 1000 bits.

For this reason, a naive statistical method might choose the second model as a better explanation for the data. However, an MDL approach would construct a single code based on the hypothesis, instead of just using the best one. This code could be the normalized maximum likelihood code or a Bayesian code. If such a code is used, then the total codelength based on the second model class would be larger than 1000 bits. Therefore, the conclusion when following an MDL approach is inevitably that there is not enough evidence to support the hypothesis of the biased coin, even though the best element of the second model class provides better fit to the data.

Statistical MDL Notation

Central to MDL theory is the one-to-one correspondence between code length functions and probability distributions (this follows from the Kraft–McMillan inequality). For any probability distribution , it is possible to construct a code such that the length (in bits) of is equal to ; this code minimizes the expected code length. Conversely, given a code , one can construct a probability distribution such that the same holds. (Rounding issues are ignored here.) In other words, searching for an efficient code is equivalent to searching for a good probability distribution.

Limitations of Statistical MDL Learning

The description language of statistical MDL is not computationally universal. Therefore it cannot, even in principle, learn models of recursive natural processes.

Statistical MDL learning is very strongly connected to probability theory and statistics through the correspondence between codes and probability distributions mentioned above. This has led some researchers to view MDL as equivalent to Bayesian inference: code length of model and data together in MDL correspond respectively to prior probability and marginal likelihood in the Bayesian framework.[8]

While Bayesian machinery is often useful in constructing efficient MDL codes, the MDL framework also accommodates other codes that are not Bayesian. An example is the Shtarkov normalized maximum likelihood code, which plays a central role in current MDL theory, but has no equivalent in Bayesian inference. Furthermore, Rissanen stresses that we should make no assumptions about the true data-generating process: in practice, a model class is typically a simplification of reality and thus does not contain any code or probability distribution that is true in any objective sense.[9][self-published source?][10] In the last mentioned reference Rissanen bases the mathematical underpinning of MDL on the Kolmogorov structure function.

According to the MDL philosophy, Bayesian methods should be dismissed if they are based on unsafe priors that would lead to poor results. The priors that are acceptable from an MDL point of view also tend to be favored in so-called objective Bayesian analysis; there, however, the motivation is usually different.[11]

Other systems

Rissanen's was not the first information-theoretic approach to learning; as early as 1968 Wallace and Boulton pioneered a related concept called minimum message length (MML). The difference between MDL and MML is a source of ongoing confusion. Superficially, the methods appear mostly equivalent, but there are some significant differences, especially in interpretation:

  • MML is a fully subjective Bayesian approach: it starts from the idea that one represents one's beliefs about the data-generating process in the form of a prior distribution. MDL avoids assumptions about the data-generating process.
  • Both methods make use of two-part codes: the first part always represents the information that one is trying to learn, such as the index of a model class (model selection) or parameter values (parameter estimation); the second part is an encoding of the data given the information in the first part. The difference between the methods is that, in the MDL literature, it is advocated that unwanted parameters should be moved to the second part of the code, where they can be represented with the data by using a so-called one-part code, which is often more efficient than a two-part code. In the original description of MML, all parameters are encoded in the first part, so all parameters are learned.
  • Within the MML framework, each parameter is stated to exactly the precision which results in the optimal overall message length: the preceding example might arise if some parameter was originally considered "possibly useful" to a model but was subsequently found to be unable to help to explain the data (such a parameter will be assigned a code length corresponding to the (Bayesian) prior probability that the parameter would be found to be unhelpful). In the MDL framework, the focus is more on comparing model classes than models, and it is more natural to approach the same question by comparing the class of models that explicitly include such a parameter against some other class that doesn't. The difference lies in the machinery applied to reach the same conclusion.

See also

References

  1. ^ Rissanen, J. (September 1978). "Modeling by shortest data description". Automatica. 14 (5): 465–471. doi:10.1016/0005-1098(78)90005-5.
  2. ^ Zenil, Hector; Kiani, Narsis A.; Zea, Allan A.; Tegnér, Jesper (January 2019). "Causal deconvolution by algorithmic generative models". Nature Machine Intelligence. 1 (1): 58–66. doi:10.1038/s42256-018-0005-0. hdl:10754/630919. S2CID 86562557.
  3. ^ "Remodelling machine learning: An AI that thinks like a scientist". Nature Machine Intelligence: 1. 28 January 2019. doi:10.1038/s42256-019-0026-3. S2CID 189929110.
  4. ^ Archived at Ghostarchive and the Wayback Machine: "The Limits of Understanding". YouTube. 14 December 2014.
  5. ^ Grunwald, Peter (June 2004). "A tutorial introduction to the minimum description length principle". arXiv:math/0406077. Bibcode:2004math......6077G. {{cite journal}}: Cite journal requires |journal= (help)
  6. ^ Grünwald, Peter; Roos, Teemu (2020). "Minimum Description Length Revisited". International Journal of Mathematics for Industry. 11 (1). doi:10.1142/S2661335219300018. hdl:10138/317252. S2CID 201314867.
  7. ^ Hastie, Trevor; Tibshirani, Robert; Friedman, Jerome (2009). "Model Assessment and Selection". The Elements of Statistical Learning. Springer Series in Statistics. pp. 219–259. doi:10.1007/978-0-387-84858-7_7. ISBN 978-0-387-84857-0.
  8. ^ MacKay, David J. C.; Kay, David J. C. Mac (2003). Information Theory, Inference and Learning Algorithms. Cambridge University Press. ISBN 978-0-521-64298-9.[page needed]
  9. ^ Rissanen, Jorma. "Homepage of Jorma Rissanen". Archived from the original on 2015-12-10. Retrieved 2010-07-03.
  10. ^ Rissanen, J. (2007). Information and Complexity in Statistical Modeling. Springer. Retrieved 2010-07-03.[page needed]
  11. ^ Nannen, Volker (May 2010). "A Short Introduction to Model Selection, Kolmogorov Complexity and Minimum Description Length (MDL)". arXiv:1005.2364. Bibcode:2010arXiv1005.2364N. {{cite journal}}: Cite journal requires |journal= (help)

Further reading

Read other articles:

Artikel ini perlu diterjemahkan dari bahasa Inggris ke bahasa Indonesia. Artikel ini ditulis atau diterjemahkan secara buruk dari Wikipedia bahasa Inggris. Jika halaman ini ditujukan untuk komunitas bahasa Inggris, halaman itu harus dikontribusikan ke Wikipedia bahasa Inggris. Lihat daftar bahasa Wikipedia. Artikel yang tidak diterjemahkan dapat dihapus secara cepat sesuai kriteria A2. Jika Anda ingin memeriksa artikel ini, Anda boleh menggunakan mesin penerjemah. Namun ingat, mohon tidak men...

 

Sir Richard DollRichard Doll in 2002Lahir(1912-10-28)28 Oktober 1912Hampton, Middlesex, InggrisMeninggal24 Juli 2005(2005-07-24) (umur 92)Oxford, InggrisKebangsaanInggrisAlmamaterKolese King's LondonDikenal atasEpidemiologi merokok, model Armitage–DollPenghargaanPenghargaan Internasional Yayasan Gairdner (1970)Medali Buchanan (1972)Penghargaan Charles S. Mott (1979)Medali Royal (1986)Penghargaan Pangeran Mahidol (1992)Penghargaan Shaw(2004)Penghargaan Internasional Raja Faisal(2005)Ka...

 

Count On MeAlbum mini karya Jay ParkDirilis13 Juli 2010Direkam2010GenreR&B, hip hopDurasi13:26BahasaKorea, InggrisLabelVitamin EntertainmentWarner Music KoreaProduserThe SmeezingtonsPark Geun TaeKronologi Jay Park Count On Me (2010) Take A Deeper Look(2011)Take A Deeper Look2011 Singel dalam album Count On Me Count On Me (Nothin' on You) (Full Melody Korean Version)Dirilis: 13 Juli 2010 Count On Me (Korea: 믿어줄래) adalah album mini pertama penyanyi Korea-Amerika, Jay Park. Album...

Mechanical process where a wellbore is drilled below the seabed This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Offshore drilling – news · newspapers · books · scholar · JSTOR (April 2010) (Learn how and when to remove this template message) An oil drilling platform off the coast of Santa Barbara, California...

 

فيلو تايلور فارنسورث (بالإنجليزية: Philo Taylor Farnsworth)‏  فيلو فارنزوورث في عام 1939 معلومات شخصية الميلاد 19 أغسطس 1906(1906-08-19)يوتا . الولايات المتحدة [1] الوفاة 11 مارس 1971 (64 سنة)يوتا . الولايات المتحدة سبب الوفاة التهاب الرئة الجنسية أمريكي الديانة مسيحي (مورموني) عضو في الجمعية �...

 

Pour les articles homonymes, voir Schur. Gustav-Adolf SchurGustav-Adolf Schur en 1956.InformationsNaissance 23 février 1931 (93 ans)Heyrothsberge (d)Nationalité allemandeDistinctions Liste détailléeSportif de RDA de l'année (d) (1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960 et 1961)Ordre du Mérite patriotique (1957)Équipes UCI 1951-1953Magdeburger SV Börde 19491954Sportclub Deutsche Hochschule für Körperkultur Leipzig1954Magdeburger SV Börde 19492.1954-1964Sportclub Deutsche...

العلاقات الرواندية اللبنانية رواندا لبنان   رواندا   لبنان تعديل مصدري - تعديل   العلاقات الرواندية اللبنانية هي العلاقات الثنائية التي تجمع بين رواندا ولبنان.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة رو�...

 

Cet article est une ébauche concernant le Brésil et le domaine militaire. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Huile sur toile de la bataille des Guararapes par Victor Meirelles (1875 - 1879) L'histoire militaire du Brésil au temps de la colonisation portugaise est marquée par de nombreux conflits avec les indigènes et par une lutte avec quelques grandes puissances européennes comme la France, l...

 

Peta menunjukkan lokasi provinsi Quirino Quirino merupakan sebuah provinsi di Filipina. Ibu kotanya ialah Cabarroguis. Provinsi ini terletak di region Cagayan Valley. Provinsi ini memiliki luas wilayah 3.046 km² dengan memiliki jumlah penduduk 1.072.571 jiwa (2010) dan 225.078 tempat tinggal. Provinsi ini memiliki angka kepadatan penduduk 352 jiwa/km². Pembagian wilayah Secara administratif provinsi Quirino terbagi menjadi 6 munisipalitas, yaitu: Aglipay Cabarroguis Diffun Maddela Nagt...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Asabri – berita · surat kabar · buku · cendekiawan · JSTOR PT Asabri (Persero)Kantor pusat Asabri di JakartaSebelumnyaPerusahaan Umum Asuransi Sosial Angkatan Bersenjata Republik IndonesiaJenisPerusahaan...

 

Yulian Efi Wakil Bupati Solok Selatan ke-3PetahanaMulai menjabat 26 April 2021PresidenJoko WidodoGubernurMahyeldi AnsharullahBupatiKhairunasPendahuluAbdul RahmanPenggantiPetahana Informasi pribadiLahir18 November 1966 (umur 57) Rawang, Sungai Pagu, Solok Selatan, Sumatera BaratPartai politikPartai Demokrat (2021-sekarang)Suami/istriHj.Betti Mulyani, A.Md., Keb.AnakAnnisaa Maha YubeRihhadatul Aisya YubeOrang tuaYulius, B.A. (ayah)Hj. Darlius Y. (ibu)Alma materUPI YPTK PadangSuntin...

 

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

Saint-Jean-des-EssartiersfrazioneSaint-Jean-des-Essartiers – Veduta LocalizzazioneStato Francia Regione Normandia Dipartimento Calvados ArrondissementVire CantoneAunay-sur-Odon ComuneVal de Drôme TerritorioCoordinate49°03′N 0°50′W / 49.05°N 0.833333°W49.05; -0.833333 (Saint-Jean-des-Essartiers)Coordinate: 49°03′N 0°50′W / 49.05°N 0.833333°W49.05; -0.833333 (Saint-Jean-des-Essartiers) Superficie8,33 km² Abitanti207[1 ...

 

恩维尔·霍查Enver Hoxha霍查官方肖像照(摄于1980年代初)阿尔巴尼亚共产党中央委员会总书记任期1943年3月—1948年11月[1]前任無(首任)继任本人(劳动党中央委员会总书记)阿尔巴尼亚劳动党中央委员会总书记任期1948年11月—1954年7月[1]前任本人(共产党中央委员会总书记)继任本人(劳动党中央委员会第一书记)阿尔巴尼亚劳动党中央委员会第一书记任期1954�...

1925 film This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Under the Antioquian Sky – news · newspapers · books · scholar · JSTOR (May 2019) (Learn how and when to remove this message) Under the Antioquian skyDirected byArturo Acevedo VallarinoWritten byArturo Acevedo VallarinoProduced byGonzalo Mejía Trujil...

 

1949 film by Edmund Goulding Everybody Does ItTheatrical release posterDirected byEdmund GouldingScreenplay byNunnally JohnsonStory byJames M. CainProduced byNunnally JohnsonStarringPaul DouglasLinda DarnellCeleste HolmCinematographyJoseph LaShelleEdited byRobert FritchMusic byAlfred NewmanProductioncompany20th Century FoxDistributed by20th Century FoxRelease date October 25, 1949 (1949-10-25) Running time98 minutesCountryUnited StatesLanguageEnglishBox office$1.6 million (US r...

 

豪栄道 豪太郎 場所入りする豪栄道基礎情報四股名 澤井 豪太郎→豪栄道 豪太郎本名 澤井 豪太郎愛称 ゴウタロウ、豪ちゃん、GAD[1][2]生年月日 (1986-04-06) 1986年4月6日(38歳)出身 大阪府寝屋川市身長 183cm体重 160kgBMI 47.26所属部屋 境川部屋得意技 右四つ・出し投げ・切り返し・外掛け・首投げ・右下手投げ成績現在の番付 引退最高位 東大関生涯戦歴 696勝493敗...

Cuasso al Monte komune di Italia Tempat Negara berdaulatItaliaDaerah di ItaliaLombardyProvinsi di ItaliaProvinsi Varese NegaraItalia Ibu kotaCuasso al Monte PendudukTotal3.515  (2023 )GeografiLuas wilayah16,18 km² [convert: unit tak dikenal]Ketinggian537 m Berbatasan denganArcisate Besano Bisuschio Cugliate-Fabiasco Marchirolo Marzio Porto Ceresio Brusimpiano Valganna SejarahSanto pelindungAmbrosius Informasi tambahanKode pos21050 Zona waktuUTC+1 UTC+2 Kode telepon0332 ID ISTAT0120...

 

American actress (born 1963) Jennifer BealsBeals at the 2008 L5 convention in BlackpoolBorn (1963-12-19) December 19, 1963 (age 60)Chicago, Illinois, U.S.EducationYale UniversityOccupationActressYears active1980–presentKnown forAlexandra Owens: FlashdanceBette Porter: The L WordSpouses Alexandre Rockwell ​ ​(m. 1986; div. 1996)​ Ken Dixon ​(m. 1998)​ ChildrenElla Dixon Jennifer Beals (born December 1...