Milnor K-theory

In mathematics, Milnor K-theory[1] is an algebraic invariant (denoted for a field ) defined by John Milnor (1970) as an attempt to study higher algebraic K-theory in the special case of fields. It was hoped this would help illuminate the structure for algebraic K-theory and give some insight about its relationships with other parts of mathematics, such as Galois cohomology and the Grothendieck–Witt ring of quadratic forms. Before Milnor K-theory was defined, there existed ad-hoc definitions for and . Fortunately, it can be shown Milnor K-theory is a part of algebraic K-theory, which in general is the easiest part to compute.[2]

Definition

Motivation

After the definition of the Grothendieck group of a commutative ring, it was expected there should be an infinite set of invariants called higher K-theory groups, from the fact there exists a short exact sequence

which should have a continuation by a long exact sequence. Note the group on the left is relative K-theory. This led to much study and as a first guess for what this theory would look like, Milnor gave a definition for fields. His definition is based upon two calculations of what higher K-theory "should" look like in degrees and . Then, if in a later generalization of algebraic K-theory was given, if the generators of lived in degree and the relations in degree , then the constructions in degrees and would give the structure for the rest of the K-theory ring. Under this assumption, Milnor gave his "ad-hoc" definition. It turns out algebraic K-theory in general has a more complex structure, but for fields the Milnor K-theory groups are contained in the general algebraic K-theory groups after tensoring with , i.e. .[3] It turns out the natural map fails to be injective for a global field [3]pg 96.

Definition

Note for fields the Grothendieck group can be readily computed as since the only finitely generated modules are finite-dimensional vector spaces. Also, Milnor's definition of higher K-groups depends upon the canonical isomorphism

(the group of units of ) and observing the calculation of K2 of a field by Hideya Matsumoto, which gave the simple presentation

for a two-sided ideal generated by elements , called Steinberg relations. Milnor took the hypothesis that these were the only relations, hence he gave the following "ad-hoc" definition of Milnor K-theory as

The direct sum of these groups is isomorphic to a tensor algebra over the integers of the multiplicative group modded out by the two-sided ideal generated by:

so

showing his definition is a direct extension of the Steinberg relations.

Properties

Ring structure

The graded module is a graded-commutative ring[1]pg 1-3.[4] If we write

as

then for and we have

From the proof of this property, there are some additional properties which fall out, like for since . Also, if of non-zero fields elements equals , then There's a direct arithmetic application: is a sum of squares if and only if every positive dimensional is nilpotent, which is a powerful statement about the structure of Milnor K-groups. In particular, for the fields , with , all of its Milnor K-groups are nilpotent. In the converse case, the field can be embedded into a real closed field, which gives a total ordering on the field.

Relation to Higher Chow groups and Quillen's higher K-theory

One of the core properties relating Milnor K-theory to higher algebraic K-theory is the fact there exists natural isomorphisms to Bloch's Higher chow groups which induces a morphism of graded rings This can be verified using an explicit morphism[2]pg 181 where This map is given by for the class of the point with . The main property to check is that for and . Note this is distinct from since this is an element in . Also, the second property implies the first for . This check can be done using a rational curve defining a cycle in whose image under the boundary map is the sum for , showing they differ by a boundary. Similarly, if the boundary map sends this cycle to , showing they differ by a boundary. The second main property to show is the Steinberg relations. With these, and the fact the higher Chow groups have a ring structure we get an explicit map Showing the map in the reverse direction is an isomorphism is more work, but we get the isomorphisms We can then relate the higher Chow groups to higher algebraic K-theory using the fact there are isomorphisms giving the relation to Quillen's higher algebraic K-theory. Note that the maps

from the Milnor K-groups of a field to the Quillen K-groups, which is an isomorphism for but not for larger n, in general. For nonzero elements in F, the symbol in means the image of in the tensor algebra. Every element of Milnor K-theory can be written as a finite sum of symbols. The fact that in for is sometimes called the Steinberg relation.

Representation in motivic cohomology

In motivic cohomology, specifically motivic homotopy theory, there is a sheaf representing a generalization of Milnor K-theory with coefficients in an abelian group . If we denote then we define the sheaf as the sheafification of the following pre-sheaf[5]pg 4 Note that sections of this pre-sheaf are equivalent classes of cycles on with coefficients in which are equidimensional and finite over (which follows straight from the definition of ). It can be shown there is an -weak equivalence with the motivic Eilenberg-Maclane sheaves (depending on the grading convention).

Examples

Finite fields

For a finite field , is a cyclic group of order (since is it isomorphic to ), so graded commutativity gives hence Because is a finite group, this implies it must have order . Looking further, can always be expressed as a sum of quadratic non-residues, i.e. elements such that are not equal to , hence showing . Because the Steinberg relations generate all relations in the Milnor K-theory ring, we have for .

Real numbers

For the field of real numbers the Milnor K-theory groups can be readily computed. In degree the group is generated by where gives a group of order and the subgroup generated by the is divisible. The subgroup generated by is not divisible because otherwise it could be expressed as a sum of squares. The Milnor K-theory ring is important in the study of motivic homotopy theory because it gives generators for part of the motivic Steenrod algebra.[6] The others are lifts from the classical Steenrod operations to motivic cohomology.

Other calculations

is an uncountable uniquely divisible group.[7] Also, is the direct sum of a cyclic group of order 2 and an uncountable uniquely divisible group; is the direct sum of the multiplicative group of and an uncountable uniquely divisible group; is the direct sum of the cyclic group of order 2 and cyclic groups of order for all odd prime . For , . The full proof is in the appendix of Milnor's original paper.[1] Some of the computation can be seen by looking at a map on induced from the inclusion of a global field to its completions , so there is a morphism whose kernel finitely generated. In addition, the cokernel is isomorphic to the roots of unity in .

In addition, for a general local field (such as a finite extension ), the Milnor K-groups are divisible.

K*M(F(t))

There is a general structure theorem computing for a field in relation to the Milnor K-theory of and extensions for non-zero primes ideals . This is given by an exact sequence where is a morphism constructed from a reduction of to for a discrete valuation . This follows from the theorem there exists only one homomorphism which for the group of units which are elements have valuation , having a natural morphism where we have where a prime element, meaning , and Since every non-zero prime ideal gives a valuation , we get the map on the Milnor K-groups.

Applications

Milnor K-theory plays a fundamental role in higher class field theory, replacing in the one-dimensional class field theory.

Milnor K-theory fits into the broader context of motivic cohomology, via the isomorphism

of the Milnor K-theory of a field with a certain motivic cohomology group.[8] In this sense, the apparently ad hoc definition of Milnor K-theory becomes a theorem: certain motivic cohomology groups of a field can be explicitly computed by generators and relations.

A much deeper result, the Bloch-Kato conjecture (also called the norm residue isomorphism theorem), relates Milnor K-theory to Galois cohomology or étale cohomology:

for any positive integer r invertible in the field F. This conjecture was proved by Vladimir Voevodsky, with contributions by Markus Rost and others.[9] This includes the theorem of Alexander Merkurjev and Andrei Suslin as well as the Milnor conjecture as special cases (the cases when and , respectively).

Finally, there is a relation between Milnor K-theory and quadratic forms. For a field F of characteristic not 2, define the fundamental ideal I in the Witt ring of quadratic forms over F to be the kernel of the homomorphism given by the dimension of a quadratic form, modulo 2. Milnor defined a homomorphism:

where denotes the class of the n-fold Pfister form.[10]

Dmitri Orlov, Alexander Vishik, and Voevodsky proved another statement called the Milnor conjecture, namely that this homomorphism is an isomorphism.[11]

See also

References

  1. ^ a b c Milnor, John (1970-12-01). "Algebraic K -theory and quadratic forms". Inventiones Mathematicae. 9 (4): 318–344. Bibcode:1970InMat...9..318M. doi:10.1007/BF01425486. ISSN 1432-1297. S2CID 13549621.
  2. ^ a b Totaro, Burt. "Milnor K-Theory is the Simplest Part of Algebraic K-Theory" (PDF). Archived (PDF) from the original on 2 Dec 2020.
  3. ^ a b Shapiro, Jack M. (1981-01-01). "Relations between the milnor and quillen K-theory of fields". Journal of Pure and Applied Algebra. 20 (1): 93–102. doi:10.1016/0022-4049(81)90051-7. ISSN 0022-4049.
  4. ^ Gille & Szamuely (2006), p. 184.
  5. ^ Voevodsky, Vladimir (2001-07-15). "Reduced power operations in motivic cohomology". arXiv:math/0107109.
  6. ^ Bachmann, Tom (May 2018). "Motivic and Real Etale Stable Homotopy Theory". Compositio Mathematica. 154 (5): 883–917. arXiv:1608.08855. doi:10.1112/S0010437X17007710. ISSN 0010-437X. S2CID 119305101.
  7. ^ An abelian group is uniquely divisible if it is a vector space over the rational numbers.
  8. ^ Mazza, Voevodsky, Weibel (2005), Theorem 5.1.
  9. ^ Voevodsky (2011).
  10. ^ Elman, Karpenko, Merkurjev (2008), sections 5 and 9.B.
  11. ^ Orlov, Vishik, Voevodsky (2007).

Read other articles:

Soviet ocenographer and polar explorer 2000 Russian stamp dedicated to Mikhail Somov Mikhail Mikhailovich Somov (Russian: Михаил Михайлович Сомов; 7 April [O.S. 25 March] 1908, in Moscow – 30 December 1973, in Leningrad) was a Soviet oceanologist, polar explorer, Doctor of Geographical Sciences (1954). Somov graduated from the Moscow Hydrometeorological Institute in 1937. In 1939, he was appointed senior researcher at the Arctic and Antarctic Research ...

 

Thomas Christopher CollinsKardinal, Uskup Agung TorontoProvinsi gerejawiOntarioKeuskupanKeuskupan Agung TorontoTakhtaTorontoPenunjukan16 Desember 2006Awal masa jabatan30 Januari 2007PendahuluAloysius AmbrozicJabatan lainKardinal-Imam San PatrizioImamatTahbisan imam5 Mei 1973oleh Paul Francis RedingTahbisan uskup14 Mei 1997oleh Anthony Frederick TonnosPelantikan kardinal18 Februari 2012oleh Benediktus XVIPeringkatKardinal-ImamInformasi pribadiNama lahirThomas Christopher CollinsLahir...

 

American politician Herschel RosenthalMember of the California State Senatefrom the 20th districtIn officeDecember 5, 1994 – November 30, 1998Preceded byDavid RobertiSucceeded byRichard AlarconMember of the California State Senatefrom the 22nd districtIn officeDecember 6, 1982 – November 30, 1994Preceded byAlan SierotySucceeded byRichard PolancoMember of the California State Assemblyfrom the 45th districtIn officeDecember 2, 1974 – November 30, 1982Preceded byWalter J. KarabianSucceeded...

JC29Stasiun Yanagawa梁川駅Pintu keluar Stasiun Yanagawa pada Mei 2021LokasiYanagawa-cho Tsunoe 1484, Ōtsuki-shi, Yamanashi-kenJepangKoordinat35°36′19″N 139°02′17″E / 35.60528°N 139.03806°E / 35.60528; 139.03806Koordinat: 35°36′19″N 139°02′17″E / 35.60528°N 139.03806°E / 35.60528; 139.03806Operator JR EastJalur■ Jalur Utama ChūōLetak77.6 km dari TokyoJumlah peron1 peron pulauJumlah jalur2Informasi lainStatusTanpa s...

 

Pervaja Gruppa A 1968 Competizione Vysšaja Liga Sport Calcio Edizione 31ª Organizzatore FFSSSR Date dal 6 aprile 1968al 12 novembre 1968 Luogo  Unione Sovietica Partecipanti 20 Formula Girone all'italiana Risultati Vincitore  Dinamo Kiev(4º titolo) Retrocessioni  Dinamo Kirovobad Statistiche Miglior marcatore Abduraimov Gavasheli (22) Incontri disputati 380 Gol segnati 844 (2,22 per incontro) Cronologia della competizione 1967 1969 Manuale L'edizione 1968 ...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт...

Reina Mercedes sometime prior to 1898 History Spain NameReina Mercedes NamesakeMercedes of Orleans, Queen Consort of Spain. BuilderNaval shipyard, Cartagena, Spain Launched9 September 1887[1] FateScuttled as blockship night of 4–5 July 1898; captured and salvaged by US Navy General characteristics Class and typeAlfonso XII-class cruiser Displacement3,042 tons Length278 ft 3 in (84.81 m) Beam43 ft 4 in (13.21 m) Draft20 ft 0 in (6.10 ...

 

Valeria SorokinaInformasi pribadiNama lahirВалерия Михайловна СорокинаValeria Mihailovna SorokinaKebangsaanRusiaLahir29 Maret 1984 (umur 40)Reshetikha, Nizhny Novgorod, USSRTinggi172 m (564 ft 4 in)Ganda putri dan campuranPeringkat tertinggi4 (WD) 6 Januari 201111 (XD) 29 Maret 2012 Rekam medali Putri bulu tangkis Mewakili  Rusia Olympic Games 2012 London Women's doubles European Championships 2010 Manchester Women's doubles 2008 Herning Women...

 

Untuk orang-orang bernama sama, lihat Francis Ford (disambiguasi). The Right HonourableFrank Forde Perdana Menteri Australia ke-15Masa jabatan6 Juli 1945 – 13 Juli 1945Penguasa monarkiGeorge VIGubernur JenderalPangeran Henry, Adipati GloucesterPendahuluJohn CurtinPenggantiBen ChifleyDeputi Pemimpin Partai BuruhMasa jabatan16 Februari 1932 – 31 Oktober 1946Pelaksana jabatan pemimpin: 6 – 13 Juli 1945PemimpinJohn CurtinBen ChifleyPendahuluTed TheodorePenggantiH. V. Evatt...

У этого термина существуют и другие значения, см. Пистис София (значения). «Пистис София» (от греч. πίστις «вера» и греч. σοφία «мудрость») — гностический христианский текст, датируемый II в. н. э.; греческий оригинал текста был утерян, коптский перевод был найден в 1773...

 

Flavius OdoacerVua Đồng tiền Odoacer, Ravenna, 477, với nét mặt nhìn nghiêng của Odoacer, được vẽ với bộ ria của Người Rợ.Vua của ÝTại vị476–493Tiền nhiệmKhông cóKế nhiệmTheodoric Đại ĐếThông tin chungMất493RavennaThân phụEdeko Flavius Odoacer (433[1] – 493), còn được biết đến với tên gọi Flavius Odovacer hay Odovacar[2] (tiếng Ý: Odoacre, tiếng Latinh: Odoacer, Odoacar, Odovacar, Odovacris[...

 

Questa voce sull'argomento centri abitati dei Paesi Bassi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Nimegacomune(NL) Nijmegen Nimega – VedutaVeduta della città LocalizzazioneStato Paesi Bassi Provincia Gheldria AmministrazioneCapoluogoNimega SindacoHubert Bruls TerritorioCoordinatedel capoluogo51°49′59.99″N 5°52′00.12″E / 51.83333°N 5.8667°E51.83333; 5.8667...

Human settlement in EnglandSt PinnockRoad junction for St PinnockSt PinnockLocation within CornwallPopulation676 United Kingdom Census 2011 including ConnonuCivil parishSt PinnockShire countyCornwallRegionSouth WestCountryEnglandSovereign stateUnited KingdomPost townLiskeardPostcode districtPL14PoliceDevon and CornwallFireCornwallAmbulanceSouth Western List of places UK England Cornwall 50°26′31″N 4°32′02″W / 50.442°N 4.534°W / 50.442; ...

 

This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Schlesinger v. Reservists Committee to Stop the War – news · newspapers · books · scholar · JSTOR (January 2019) (Learn how and when to remove this message) 1974 United States Supreme Court caseSchlesinger v. Reservists Committee to Stop the WarSupreme Court of the United StatesArgued January 14, 1974Deci...

 

لينداو    شعار الاسم الرسمي (بالألمانية: Lindau)‏    الإحداثيات 47°32′45″N 9°41′02″E / 47.545833333333°N 9.6838888888889°E / 47.545833333333; 9.6838888888889   [1] تقسيم إداري  البلد ألمانيا (1871–)[2][3]  خصائص جغرافية  المساحة 33.06 كيلومتر مربع (31 ديسمبر 2017)[4]  ارتفا...

Political party in Hong Kong Politihk Social Strategic 香港政研會ChairmanInnes TangFounded10 April 2016 (2016-04-10)Membership60IdeologyChinese nationalismChinese neoconservatismRegional affiliationPro-Beijing campColours  MagentaPolitics of Hong KongPolitical partiesElections Politihk Social Strategic (Chinese: 香港政研會) is a political organisation in Hong Kong founded by a group of pro-Beijing activists in 2016 who opposed the 2014 Hong Kong protests ...

 

American politician Ty WinterWinter in 2023Member of the Colorado House of Representativesfrom the 47th districtIncumbentAssumed office January 9, 2023Preceded byStephanie Luck Personal detailsNationalityAmericanPolitical partyRepublicanResidenceLas Animas County, ColoradoProfessionRancherWebsitewww.tyhd47.com Ty Winter is a state representative from Las Animas County, Colorado. A Republican, Winter represents Colorado House of Representatives District 47, which includes all o...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) بطولة أمم أوروبا لكرة السلة 1997 المعطيات المنطقة أوروبا المستضيف  إسبانيا العام 1997 التواريخ 24 يونيو – 6...

بيير لاتور   معلومات شخصية الميلاد 12 أكتوبر 1993 (31 سنة)[1]  رومان سور ديزير  الطول 180 سنتيمتر  الجنسية فرنسا  الوزن 64 كيلوغرام  الحياة العملية الفرق أيه إل أم (2015–2020)أيه إل أم (1 أغسطس 2013–31 ديسمبر 2013)ديركت إينرجي (2021–)  المهنة دراج  نوع السباق سباقات الدر...

 

Mars 1812 Nombre de jours 31 Premier jour Dimanche 1er mars 18127e jour de la semaine 9 Dernier jour Mardi 31 mars 18122e jour de la semaine 14 Calendrier mars 1812 Sem Lu Ma Me Je Ve Sa Di 9 1er 10 2 3 4 5 6 7 8 11 9 10 11 12 13 14 15 12 16 17 18 19 20 21 22  13 23 24 25 26 27 28 29  14 30 31 1812 • Années 1810 • XIXe siècle Mois précédent et suivant Février 1812 Avril 1812 Mars précédent et suivant Mars 1811 Mars 1813 Chronologies par zone géograph...