Bloch's higher Chow group

In algebraic geometry, Bloch's higher Chow groups, a generalization of Chow group, is a precursor and a basic example of motivic cohomology (for smooth varieties). It was introduced by Spencer Bloch (Bloch 1986) and the basic theory has been developed by Bloch and Marc Levine.

In more precise terms, a theorem of Voevodsky[1] implies: for a smooth scheme X over a field and integers p, q, there is a natural isomorphism

between motivic cohomology groups and higher Chow groups.

Motivation

One of the motivations for higher Chow groups comes from homotopy theory. In particular, if are algebraic cycles in which are rationally equivalent via a cycle , then can be thought of as a path between and , and the higher Chow groups are meant to encode the information of higher homotopy coherence. For example,

can be thought of as the homotopy classes of cycles while

can be thought of as the homotopy classes of homotopies of cycles.

Definition

Let X be a quasi-projective algebraic scheme over a field (“algebraic” means separated and of finite type).

For each integer , define

which is an algebraic analog of a standard q-simplex. For each sequence , the closed subscheme , which is isomorphic to , is called a face of .

For each i, there is the embedding

We write for the group of algebraic i-cycles on X and for the subgroup generated by closed subvarieties that intersect properly with for each face F of .

Since is an effective Cartier divisor, there is the Gysin homomorphism:

,

that (by definition) maps a subvariety V to the intersection

Define the boundary operator which yields the chain complex

Finally, the q-th higher Chow group of X is defined as the q-th homology of the above complex:

(More simply, since is naturally a simplicial abelian group, in view of the Dold–Kan correspondence, higher Chow groups can also be defined as homotopy groups .)

For example, if [2] is a closed subvariety such that the intersections with the faces are proper, then and this means, by Proposition 1.6. in Fulton’s intersection theory, that the image of is precisely the group of cycles rationally equivalent to zero; that is,

the r-th Chow group of X.

Properties

Functoriality

Proper maps are covariant between the higher chow groups while flat maps are contravariant. Also, whenever is smooth, any map to is contravariant.

Homotopy invariance

If is an algebraic vector bundle, then there is the homotopy equivalence

Localization

Given a closed equidimensional subscheme there is a localization long exact sequence

where . In particular, this shows the higher chow groups naturally extend the exact sequence of chow groups.

Localization theorem

(Bloch 1994) showed that, given an open subset , for ,

is a homotopy equivalence. In particular, if has pure codimension, then it yields the long exact sequence for higher Chow groups (called the localization sequence).

References

  1. ^ Lecture Notes on Motivic Cohomology (PDF). Clay Math Monographs. p. 159.
  2. ^ Here, we identify with a subscheme of and then, without loss of generality, assume one vertex is the origin 0 and the other is ∞.

Read other articles:

Регион УкраиныОбластьПолтавская областьукр. Полтавська область Флаг Герб 49°30′ с. ш. 34°00′ в. д.HGЯO Страна  Украина Включает 4 района Адм. центр  Полтава Глава областной государственной администрации Филипп Евгеньевич Пронин[1] Председатель областной р...

 

العلاقات الأسترالية القيرغيزستانية أستراليا قيرغيزستان   أستراليا   قيرغيزستان تعديل مصدري - تعديل   العلاقات الأسترالية القيرغيزستانية هي العلاقات الثنائية التي تجمع بين أستراليا وقيرغيزستان.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عا...

 

عنتمحافظة المنوفيةمدن شبين الكوم (حي شرق حي غرب) منوف مدينة السادات الشهداء تلا بركة السبع قويسنا الباجور أشمون سرس الليان مراكز شبين الكوم منوف السادات الشهداء تلا بركة السبع قويسنا الباجور أشمون موضوعات متعلقة علم محافظة المنوفية حادثة دنشواي متحف دنشواي جامعة المنوفي...

  لمعانٍ أخرى، طالع أندرو موراي (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) أندرو موراي   معلومات شخصية الميلاد 16 مايو 1813   الوفاة 8 أكتوبر 1880 (67 سنة)   مواطنة أستراليا  الحياة العمل...

 

Football clubSlonim-2017Full nameFootball Club Slonim-2017Founded2010 (Beltransgaz Slonim)2013 (FC Slonim)GroundYunost Stadium, SlonimCapacity2,220ManagerAntuan MayorovLeagueBelarusian First League2023Belarusian First League, 15th of 17 Home colours Away colours Slonim-2017 is a Belarusian football club based in Slonim, Grodno Region. History The team was founded in 2013 as a result of merger between Beltransgaz Slonim and Kommunalnik Slonim.[1] The new team is considered a successor ...

 

Unincorporated community in West Virginia, United StatesCherry RunUnincorporated communityHouseholder Road in Cherry RunCherry RunLocation within the state of West VirginiaShow map of West VirginiaCherry RunCherry Run (the United States)Show map of the United StatesCoordinates: 39°37′39″N 78°2′2″W / 39.62750°N 78.03389°W / 39.62750; -78.03389CountryUnited StatesStateWest VirginiaCountyMorganTime zoneUTC-5 (Eastern (EST)) • Summer (DST)UTC-4 (ED...

Questa voce sugli argomenti palazzi del Veneto e provincia di Verona è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Palazzo FregosoLocalizzazioneStato Italia LocalitàGarda Coordinate45°34′33.6″N 10°42′25.34″E / 45.576°N 10.70704°E45.576; 10.70704Coordinate: 45°34′33.6″N 10°42′25.34″E / 45.576°N 10.70704°E45.576; 10.70704 Informazioni generaliCondizioniIn uso CostruzioneXV secolo Realizzazi...

 

Hema MaliniLahirHema Malini R. Chakravarty16 Oktober 1948 (umur 75) Ammankudi, Tamil NaduNama lainDream GirlPekerjaanAktris, ProduserSuami/istriDharmendra (1980-present) Hema Malini (Hindi: हेमा मालिनी Tamil: ஹேமமாலினி, lahir 16 Oktober 1948) adalah aktris Senior dan produser film bollywood, merupakan istri kedua dari aktor Dharmendra dan ibu dari aktris muda Esha Deol. Filmografi Pandava Vanavasam (1961) Sapno Ka Saudagar (1968) Johny Mera Naa...

 

2020 Raw AirDiscipline Men WomenOverall Kamil Stoch Maren LundbyCompetitionEdition 4th 2ndLocations 2 3Individual 5 5Team 1 —Cancelled 4 1 ←20192022→ The Raw Air 2020 is the fourth edition of Raw Air for men, a ten-day tournament for men in ski jumping and ski flying held across Norway between 6–15 March 2020; and the 2nd edition for women, a six-day tournament in ski jumping held across Norway between 7–12 March 2020. It is part of the 2019/20 World Cup season. Competition format ...

Australian financial company This article is about the Australian financial company. For the Canadian oil company, see Suncor Energy. Suncorp GroupCompany typePublicTraded asASX: SUNS&P/ASX 200 componentIndustryGeneral insuranceBankingLife insuranceSuperannuationWealth managementFounded1996 (1996)HeadquartersBrisbane, Queensland, AustraliaArea servedAustralia and New ZealandKey peopleChristine McLoughlin (Chairman)Steve Johnston(CEO)Revenue A$14.99 billion (2022)Operating i...

 

Flowering plant in the heather family Calluna Flowering Calluna vulgaris Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Asterids Order: Ericales Family: Ericaceae Subfamily: Ericoideae Tribe: Ericeae Genus: CallunaSalisb. Species: C. vulgaris Binomial name Calluna vulgaris(L.) Hull Calluna vulgaris, common heather, ling, or simply heather,[1] is the sole species in the genus Calluna in the flowering plant family Ericaceae...

 

KSVK 12.7 Jenis Senapan anti materielSenapan runduk Negara asal  Rusia Sejarah pemakaian Digunakan oleh Rusia Spesifikasi Berat 12 kg (tanpa alat bidik optik) Panjang 1400 mm Panjang laras 1000 mm Peluru 12,7 x 108 mm Mekanisme Aksi-baut Amunisi Magazen box isi 5 butir KSVK 12,7 adalah senapan runduk bullpup aksi-baut anti meteriel buatan Rusia yang diperuntukan sebagai senapan kontra penembak runduk. Senapan ini juga mampu menembus dan merusak dinding dan kendaraan. Pran...

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「...

 

此條目需要补充更多来源。 (2021年7月4日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:美国众议院 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 美國眾議院 United States House of Representatives第118届美国国会众议院徽章 众议院旗...

 

Island in Hampshire, England Hayling IslandThe coastline of Hayling IslandHayling IslandGeographyLocationSolentCoordinates50°48′10″N 0°58′30″W / 50.80278°N 0.97500°W / 50.80278; -0.97500Total islands1Area30 km2 (12 sq mi)Length6.5 km (4.04 mi)Width6.5 km (4.04 mi)AdministrationEnglandCountyHampshireBoroughHavantLargest settlementMengham (town)DemographicsPopulation17,379 (2011)Pop. density562.9/km2 (1457.9/sq mi) Hayl...

American diplomat This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Bryan David Hunt – news · newspapers · books · scholar · JSTOR (August 2023) (Learn how and when to remove this message) Bryan D...

 

Kabupaten MaybratKabupatenDanau Uter di Aitinyo LambangPetaKabupaten MaybratPetaTampilkan peta Maluku dan PapuaKabupaten MaybratKabupaten Maybrat (Indonesia)Tampilkan peta IndonesiaKoordinat: 1°12′56″S 132°21′03″E / 1.2155°S 132.35092°E / -1.2155; 132.35092Negara IndonesiaProvinsiPapua Barat DayaTanggal berdiri16 Januari 2009Dasar hukumUU RI Nomor 13 Tahun 2009[1]Ibu kotaKumurkekJumlah satuan pemerintahan Daftar Distrik: 24Kelurahan: 1Kampung: ...

 

Location of Madison County in Iowa This is a list of the National Register of Historic Places listings in Madison County, Iowa. This is intended to be a complete list of the properties and districts on the National Register of Historic Places in Madison County, Iowa, United States. Latitude and longitude coordinates are provided for many National Register properties and districts; these locations may be seen together in a map.[1] There are 53 properties listed on the National Registe...

Island of the Fraser River in British Columbia, Canada For other uses, see Lulu Island (disambiguation). LuluRichmond, British Columbia is on Lulu Island, the larger of the two red islandsLuluLulu Island (British Columbia, Canada)GeographyLocationFraser RiverCoordinates49°10′05″N 123°04′50″W / 49.16806°N 123.08056°W / 49.16806; -123.08056Area122.4 km2 (47.3 sq mi)AdministrationCanadaProvinceBritish ColumbiaCityCity of RichmondCityNew Westmins...

 

          本模板依照頁面品質評定標準无需评级。本Template属于下列维基专题范畴: 政治专题 (获评模板級、不适用重要度) 政治WikiProject:政治Template:WikiProject Politics政治条目 政治主题查论编本Template属于政治专题范畴,该专题旨在改善中文维基百科政治类内容。如果您有意参与,请浏览专题主页、参与讨论,并完成相应的开放性任务。  模板  根据专题质量评级标...