Mertens function

Mertens function to n = 10000
Mertens function to n = 10000000

In number theory, the Mertens function is defined for all positive integers n as

where is the Möbius function. The function is named in honour of Franz Mertens. This definition can be extended to positive real numbers as follows:

Less formally, is the count of square-free integers up to x that have an even number of prime factors, minus the count of those that have an odd number.

The first 143 M(n) values are (sequence A002321 in the OEIS)

M(n) +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11
0+ 1 0 −1 −1 −2 −1 −2 −2 −2 −1 −2
12+ −2 −3 −2 −1 −1 −2 −2 −3 −3 −2 −1 −2
24+ −2 −2 −1 −1 −1 −2 −3 −4 −4 −3 −2 −1
36+ −1 −2 −1 0 0 −1 −2 −3 −3 −3 −2 −3
48+ −3 −3 −3 −2 −2 −3 −3 −2 −2 −1 0 −1
60+ −1 −2 −1 −1 −1 0 −1 −2 −2 −1 −2 −3
72+ −3 −4 −3 −3 −3 −2 −3 −4 −4 −4 −3 −4
84+ −4 −3 −2 −1 −1 −2 −2 −1 −1 0 1 2
96+ 2 1 1 1 1 0 −1 −2 −2 −3 −2 −3
108+ −3 −4 −5 −4 −4 −5 −6 −5 −5 −5 −4 −3
120+ −3 −3 −2 −1 −1 −1 −1 −2 −2 −1 −2 −3
132+ −3 −2 −1 −1 −1 −2 −3 −4 −4 −3 −2 −1

The Mertens function slowly grows in positive and negative directions both on average and in peak value, oscillating in an apparently chaotic manner passing through zero when n has the values

2, 39, 40, 58, 65, 93, 101, 145, 149, 150, 159, 160, 163, 164, 166, 214, 231, 232, 235, 236, 238, 254, 329, 331, 332, 333, 353, 355, 356, 358, 362, 363, 364, 366, 393, 401, 403, 404, 405, 407, 408, 413, 414, 419, 420, 422, 423, 424, 425, 427, 428, ... (sequence A028442 in the OEIS).

Because the Möbius function only takes the values −1, 0, and +1, the Mertens function moves slowly, and there is no x such that |M(x)| > x. H. Davenport[1] demonstrated that, for any fixed h,

uniformly in . This implies, for that


The Mertens conjecture went further, stating that there would be no x where the absolute value of the Mertens function exceeds the square root of x. The Mertens conjecture was proven false in 1985 by Andrew Odlyzko and Herman te Riele. However, the Riemann hypothesis is equivalent to a weaker conjecture on the growth of M(x), namely M(x) = O(x1/2 + ε). Since high values for M(x) grow at least as fast as , this puts a rather tight bound on its rate of growth. Here, O refers to big O notation.

The true rate of growth of M(x) is not known. An unpublished conjecture of Steve Gonek states that

Probabilistic evidence towards this conjecture is given by Nathan Ng.[2] In particular, Ng gives a conditional proof that the function has a limiting distribution on . That is, for all bounded Lipschitz continuous functions on the reals we have that

if one assumes various conjectures about the Riemann zeta function.

Representations

As an integral

Using the Euler product, one finds that

where is the Riemann zeta function, and the product is taken over primes. Then, using this Dirichlet series with Perron's formula, one obtains

where c > 1.

Conversely, one has the Mellin transform

which holds for .

A curious relation given by Mertens himself involving the second Chebyshev function is

Assuming that the Riemann zeta function has no multiple non-trivial zeros, one has the "exact formula" by the residue theorem:

Weyl conjectured that the Mertens function satisfied the approximate functional-differential equation

where H(x) is the Heaviside step function, B are Bernoulli numbers, and all derivatives with respect to t are evaluated at t = 0.

There is also a trace formula involving a sum over the Möbius function and zeros of the Riemann zeta function in the form

where the first sum on the right-hand side is taken over the non-trivial zeros of the Riemann zeta function, and (gh) are related by the Fourier transform, such that

As a sum over Farey sequences

Another formula for the Mertens function is

where is the Farey sequence of order n.

This formula is used in the proof of the Franel–Landau theorem.[3]

As a determinant

M(n) is the determinant of the n × n Redheffer matrix, a (0, 1) matrix in which aij is 1 if either j is 1 or i divides j.

As a sum of the number of points under n-dimensional hyperboloids

This formulation[citation needed] expanding the Mertens function suggests asymptotic bounds obtained by considering the Piltz divisor problem, which generalizes the Dirichlet divisor problem of computing asymptotic estimates for the summatory function of the divisor function.

Other properties

From [4] we have

Furthermore, from [5]

where is the totient summatory function.

Calculation

Neither of the methods mentioned previously leads to practical algorithms to calculate the Mertens function. Using sieve methods similar to those used in prime counting, the Mertens function has been computed for all integers up to an increasing range of x.[6][7]

Person Year Limit
Mertens 1897 104
von Sterneck 1897 1.5×105
von Sterneck 1901 5×105
von Sterneck 1912 5×106
Neubauer 1963 108
Cohen and Dress 1979 7.8×109
Dress 1993 1012
Lioen and van de Lune 1994 1013
Kotnik and van de Lune 2003 1014
Hurst 2016 1016

The Mertens function for all integer values up to x may be computed in O(x log log x) time. A combinatorial algorithm has been developed incrementally starting in 1870 by Ernst Meissel,[8] Lehmer,[9] Lagarias-Miller-Odlyzko,[10] and Deléglise-Rivat[11] that computes isolated values of M(x) in O(x2/3(log log x)1/3) time; a further improvement by Harald Helfgott and Lola Thompson in 2021 improves this to O(x3/5(log x)3/5+ε),[12] and an algorithm by Lagarias and Odlyzko based on integrals of the Riemann zeta function achieves a running time of O(x1/2+ε).[13]

See OEISA084237 for values of M(x) at powers of 10.

Known upper bounds

Ng notes that the Riemann hypothesis (RH) is equivalent to

for some positive constant . Other upper bounds have been obtained by Maier, Montgomery, and Soundarajan assuming the RH including

Known explicit upper bounds without assuming the RH are given by:[14]

It is possible to simplify the above expression into a less restrictive but illustrative form as:


See also

Notes

  1. ^ Davenport, H. (November 1937). "On Some Infinite Series Involving Arithmetical Functions (Ii)". The Quarterly Journal of Mathematics. Original Series. 8 (1): 313–320. doi:10.1093/qmath/os-8.1.313.
  2. ^ Nathan Ng (October 25, 2018). "The distribution of the summatory function of the Mobius function". arXiv:math/0310381.
  3. ^ Edwards, Ch. 12.2.
  4. ^ Lehman, R.S. (1960). "On Liouville's Function". Math. Comput. 14: 311–320.
  5. ^ Kanemitsu, S.; Yoshimoto, M. (1996). "Farey series and the Riemann hypothesis". Acta Arithmetica. 75 (4): 351–374. doi:10.4064/aa-75-4-351-374.
  6. ^ Kotnik, Tadej; van de Lune, Jan (November 2003). "Further systematic computations on the summatory function of the Möbius function". Modelling, Analysis and Simulation. MAS-R0313.
  7. ^ Hurst, Greg (2016). "Computations of the Mertens Function and Improved Bounds on the Mertens Conjecture". arXiv:1610.08551 [math.NT].
  8. ^ Meissel, Ernst (1870). "Ueber die Bestimmung der Primzahlenmenge innerhalb gegebener Grenzen". Mathematische Annalen (in German). 2 (4): 636–642. doi:10.1007/BF01444045. ISSN 0025-5831. S2CID 119828499.
  9. ^ Lehmer, Derrick Henry (April 1, 1958). "ON THE EXACT NUMBER OF PRIMES LESS THAN A GIVEN LIMIT". Illinois J. Math. 3 (3): 381–388. Retrieved February 1, 2017.
  10. ^ Lagarias, Jeffrey; Miller, Victor; Odlyzko, Andrew (April 11, 1985). "Computing : The Meissel–Lehmer method" (PDF). Mathematics of Computation. 44 (170): 537–560. doi:10.1090/S0025-5718-1985-0777285-5. Retrieved September 13, 2016.
  11. ^ Rivat, Joöl; Deléglise, Marc (1996). "Computing the summation of the Möbius function". Experimental Mathematics. 5 (4): 291–295. doi:10.1080/10586458.1996.10504594. ISSN 1944-950X. S2CID 574146.
  12. ^ Helfgott, Harald; Thompson, Lola (2023). "Summing : a faster elementary algorithm". Research in Number Theory. 9 (1): 6. doi:10.1007/s40993-022-00408-8. ISSN 2363-9555. PMC 9731940. PMID 36511765.
  13. ^ Lagarias, Jeffrey; Odlyzko, Andrew (June 1987). "Computing : An analytic method". Journal of Algorithms. 8 (2): 173–191. doi:10.1016/0196-6774(87)90037-X.
  14. ^ El Marraki, M. (1995). "Fonction sommatoire de la fonction de Möbius, 3. Majorations asymptotiques effectives fortes". Journal de théorie des nombres de Bordeaux. 7 (2).

References

Read other articles:

[1]Température la plus basse notée à l'observatoire de Paris - 1.8° Température la plus haute notée à l'observatoire de Paris ( à l'ombre à l'abri de tout reflet) 23.7° Hauteur annuelles des pluies 578.7 mm Chronologie de la France ◄◄ 1697 1698 1699 1700 1701 1702 1703 1704 1705 ►► Chronologies Louis XIV en costume de sacre de Hyacinthe Rigaud.Données clés 1698 1699 1700  1701  1702 1703 1704Décennies :1670 1680 1690  1700  1710 1720 1730Siècles&...

 

2023 police killing in Blendon Township, Ohio Killing of Ta'Kiya YoungTa'Kiya Young, depicted in an undated photo.DateAugust 24, 2023 (2023-08-24)LocationBlendon Township, Ohio, U.S.TypeHomicide by shooting, police killing, feticideParticipantsYoung and two police officersDeathsYoung and her unborn childInquiriesOhio Bureau of Criminal Investigation On August 24, 2023, Ta'Kiya Young, a 21-year-old pregnant woman, was shot to death by a police officer in Blendon Township, Oh...

 

American politician (1822–1897) Hamilton Prioleau BeeBorn(1822-07-22)July 22, 1822Charleston, South CarolinaDiedOctober 3, 1897(1897-10-03) (aged 75)San Antonio, TexasPlace of burialConfederate Cemetery, San Antonio, TexasAllegiance United States Confederate States of AmericaService/branch United States Army Confederate States ArmyYears of service1846–1848 (USA)1862–1865 (CSA)Rank First Lieutenant (USA) Brigadier General (CSA)Unit1st Regiment, Texas Mounted Volu...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Puisi – berita · surat kabar · buku · cendekiawan · JSTOR Sastra Sastra lisan Folklor Dongeng Lagu Legenda Mitos Peribahasa Wiracarita Penampilan Buku audio Permainan panggung Pidato Genre tertulis utama...

 

Albert Szent-GyörgyiAlbert Szent-Györgyi pada saat pertemuanya diNational Institutes of HealthLahir16 September 1893Budapest, Austria-HungariaMeninggal22 Oktober 1986Woods Hole, Massachusetts, Amerika SerikatKebangsaanHungariaDikenal atasVitamin CPenghargaanNobel Prize bidang Fisiologi atau Kedokteran pada 1937Karier ilmiahBidangFisiologi Tanda tangan Albert Szent-Györgyi de Nagyrápolt (16 September 1893 – 22 Oktober 1986), seorang biokimiawan Amerika kelahiran Hungaria, ...

 

Frederator StudiosLogo perusahaan tahun 2009JenisSwastaIndustriProduksi kartun dan animasiPendahuluFred/AlanDidirikan1997 (1997)PendiriFred SeibertKantorpusatNew York City, New York, Amerika SerikatCabang2 kantor (2013)TokohkunciEric Homan (Pengembangan Kreatif)Kevin Kolde (Produser Pengawas)Carrie Miller (Produser)ProdukThe Fairly OddParentsChalkZoneMy Life as a Teenage RobotAdventure TimeBravest WarriorsAnakusahaBolder MediaFrederator FilmsSitus webfrederator.com Frederator Studios ada...

Навчально-науковий інститут інноваційних освітніх технологій Західноукраїнського національного університету Герб навчально-наукового інституту інноваційних освітніх технологій ЗУНУ Скорочена назва ННІІОТ ЗУНУ Основні дані Засновано 2013 Заклад Західноукраїнський �...

 

جيش التحرير المغربي هي مجموعة عسكرية لتحرير المغرب من الاحتلال الأجنبي. شارك أحد عشرَ شخصًا فِي إحداث جيش التحرير، وأمنُوا أبرزهم عباس المسعدي وعبد الكريم الخطيب وعبد الله الصنهاجي[1] ومحمد البصري ومحمد بوكرين ومحمد بن سعيد أيت إيدر و سعيد بونعيلات. في عام 1956، بدأت وحد�...

 

le Montison Caractéristiques Longueur 14,1 km Bassin collecteur Loire Régime pluvial Cours · Localisation Villeperdue · Altitude 114 m · Coordonnées 47° 10′ 55″ N, 0° 39′ 09″ E Confluence l'Indre · Localisation Artannes-sur-Indre · Altitude 46 m · Coordonnées 47° 15′ 59″ N, 0° 35′ 52″ E Géographie Pays traversés France Département Indre-et-Loire Régions traversées Centre-Val de Loire...

Human settlement in EnglandAldrethAerial view of AldrethAldrethLocation within CambridgeshireOS grid referenceTL446735• London62 mi (100 km) SCivil parishHaddenhamDistrictEast CambridgeshireShire countyCambridgeshireRegionEastCountryEnglandSovereign stateUnited KingdomPost townELYPostcode districtCB6Dialling code01353PoliceCambridgeshireFireCambridgeshireAmbulanceEast of England UK ParliamentSouth East CambridgeshireWebsiteECDC List of...

 

Wali Kota CilegonPetahanaHelldy Agustiansejak 26 Februari 2021Masa jabatan5 tahun dan dapat dipilih kembali untuk satu kali masa jabatanDibentuk29 Juli 1987; 36 tahun lalu (1987-07-29)Pejabat pertamaNurman SuriadintaSitus webSitus web resmi Berikut adalah daftar Wali Kota Cilegon secara definitif sejak tahun 1999 di bawah Pemerintah Republik Indonesia. Nomor urut Wali Kota Potret Partai Awal Akhir Masa jabatan Periode Wakil Ref. 1   Aat Syafaat(tidak diketahui–2016) Golkar 7 ...

 

Art movement started in the 1990s James Seehafer, The Landing (2007) Photography & digital collage Massurrealism is a portmanteau word coined in 1992 by American artist James Seehafer,[1] who described a trend among some postmodern artists that mix the aesthetic styles and themes of surrealism and mass media—including pop art.[1] History James Seehafer, Untitled 1990 (2007) SFX photography, digital collage. Massurrealism is a development of surrealism that emphasizes...

Eduard RüppellEduard RüppellLahir20 November 1794Frankfurt-on-MainMeninggal10 Desember 1884KebangsaanJermanAlmamaterUniversitas PaviaKarier ilmiahBidangnaturalis Wilhelm Peter Eduard Simon Rüppell (20 November 1794 - 10 Desember 1884) adalah seorang naturalis dan petualang asal Jerman. Pada 1830, Rüppell datang ke Afrika, dan menjadi naturalis pertama yang mengunjungi Ethiopia. Rüppell juga menerbitkan kisah perjalanannya, berjudul, Travels in Abyssinia. Referensi Barbara and Richard Me...

 

British TV series or programme The Andrew Marr ShowAlso known asSunday AM (2005–2007)Sunday MorningGenrePoliticsPresented byAndrew MarrCountry of originUnited KingdomOriginal languageEnglishProductionProduction locationsStudio 54D, New Broadcasting House, LondonRunning time60 minutesOriginal releaseNetworkBBC OneRelease11 September 2005 (2005-09-11) –19 December 2021 (2021-12-19)RelatedBreakfast with FrostSunday with Laura Kuenssberg The Andrew Marr Show is a Sunday mornin...

 

  لمعانٍ أخرى، طالع ترافيس براون (توضيح). ترافيس براون   معلومات شخصية اسم الولادة (بالإنجليزية: Travis Kuualiialoha Browne)‏  الميلاد 17 يوليو 1982 (42 سنة)  أواهو، هاواي  الطول 201 سنتيمتر  الجنسية الولايات المتحدة  الوزن 113 كيلوغرام  المدرسة الأم أكاديمية سان ديجيتو...

Selección de voleibol de Yugoslavia Archivo:Flag of Yugoslavia (1943-1992).svgDatos generalesPaís YugoslaviaConfederación CEVRanking FIVB Campeonato MundialParticipaciones 4 (primera vez en 1956)Mejor resultado 8.º puesto en 1962 y 1966Campeonato EuropeoParticipaciones 13 (primera vez en 1951)Mejor resultado en 1975 y 1979Juegos OlímpicosParticipaciones 1 (primera vez en 1980)Mejor resultado 6.º puesto en 1980[editar datos en Wikidata] La Selección de voleibol de Yugoslavia f...

 

School of thought in criminology This article is about the classical school of thought in criminology. For the classical school of economic thought, see Classical economics. For other uses, see Classical (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Classical school criminology – news · newspapers...

 

النيرب الإحداثيات 36°10′32″N 37°13′40″E / 36.175555555556°N 37.227777777778°E / 36.175555555556; 37.227777777778   تقسيم إداري  البلد سوريا[1]  التقسيم الأعلى حلب  خصائص جغرافية ارتفاع 393 متر  رمز جيونيمز 166356  تعديل مصدري - تعديل   النيرب هي قرية تقع جنوب شرقي مدينة حلب في سوري...

Это заготовка статьи об авиации. Помогите Википедии, дополнив её. В статье не хватает ссылок на источники (см. рекомендации по поиску). Информация должна быть проверяема, иначе она может быть удалена. Вы можете отредактировать статью, добавив ссылки на авторитетные исто...

 

District in Northern Taiwan, Republic of ChinaJinshan 金山區KanayamaDistrictJinshan DistrictJinshan District in New Taipei CityCoordinates: 25°14′10″N 121°37′03″E / 25.23611°N 121.61750°E / 25.23611; 121.61750CountryRepublic of China (Taiwan)RegionNorthern TaiwanSpecial municipalityNew Taipei City (新北市)Area • Total49.21 km2 (19.00 sq mi)Population (March 2023) • Total20,551Time zoneUTC+8 (CST)Postal code2...