Mahāvīra (or Mahaviracharya, "Mahavira the Teacher") was a 9th-century Indian Jainmathematician possibly born in Mysore, in India.[1][2][3] He authored Gaṇita-sāra-saṅgraha (Ganita Sara Sangraha) or the Compendium on the gist of Mathematics in 850 CE.[4] He was patronised by the Rashtrakuta emperor Amoghavarsha.[4] He separated astrology from mathematics. It is the earliest Indian text entirely devoted to mathematics.[5] He expounded on the same subjects on which Aryabhata and Brahmagupta contended, but he expressed them more clearly. His work is a highly syncopated approach to algebra and the emphasis in much of his text is on developing the techniques necessary to solve algebraic problems.[6] He is highly respected among Indian mathematicians, because of his establishment of terminology for concepts such as equilateral, and isosceles triangle; rhombus; circle and semicircle.[7] Mahāvīra's eminence spread throughout southern India and his books proved inspirational to other mathematicians in Southern India.[8] It was translated into the Telugu language by Pavuluri Mallana as Saara Sangraha Ganitamu.[9]
He discovered algebraic identities like a3 = a (a + b) (a − b) + b2 (a − b) + b3.[3] He also found out the formula for nCr as [n (n − 1) (n − 2) ... (n − r + 1)] / [r (r − 1) (r − 2) ... 2 * 1].[10] He devised a formula which approximated the area and perimeters of ellipses and found methods to calculate the square of a number and cube roots of a number.[11] He asserted that the square root of a negative number does not exist.[12] Arithmetic operations utilized in his works like Gaṇita-sāra-saṅgraha(Ganita Sara Sangraha) uses decimal place-value system and include the use of zero. However, he erroneously states that a number divided by zero remains unchanged.[13]
Rules for decomposing fractions
Mahāvīra's Gaṇita-sāra-saṅgraha gave systematic rules for expressing a fraction as the sum of unit fractions.[14] This follows the use of unit fractions in Indian mathematics in the Vedic period, and the Śulba Sūtras' giving an approximation of √2 equivalent to .[14]
In the Gaṇita-sāra-saṅgraha (GSS), the second section of the chapter on arithmetic is named kalā-savarṇa-vyavahāra (lit. "the operation of the reduction of fractions"). In this, the bhāgajāti section (verses 55–98) gives rules for the following:[14]
To express 1 as the sum of n unit fractions (GSS kalāsavarṇa 75, examples in 76):[14]
When the result is one, the denominators of the quantities having one as numerators are [the numbers] beginning with one and multiplied by three, in order. The first and the last are multiplied by two and two-thirds [respectively].
To express 1 as the sum of an odd number of unit fractions (GSS kalāsavarṇa 77):[14]
To express a unit fraction as the sum of n other fractions with given numerators (GSS kalāsavarṇa 78, examples in 79):
To express any fraction as a sum of unit fractions (GSS kalāsavarṇa 80, examples in 81):[14]
Choose an integer i such that is an integer r, then write
and repeat the process for the second term, recursively. (Note that if i is always chosen to be the smallest such integer, this is identical to the greedy algorithm for Egyptian fractions.)
To express a unit fraction as the sum of two other unit fractions (GSS kalāsavarṇa 85, example in 86):[14]
where is to be chosen such that is an integer (for which must be a multiple of ).
To express a fraction as the sum of two other fractions with given numerators and (GSS kalāsavarṇa 87, example in 88):[14]
where is to be chosen such that divides
Some further rules were given in the Gaṇita-kaumudi of Nārāyaṇa in the 14th century.[14]
Kusuba, Takanori (2004), "Indian Rules for the Decomposition of Fractions", in Charles Burnett; Jan P. Hogendijk; Kim Plofker; et al. (eds.), Studies in the History of the Exact Sciences in Honour of David Pingree, Brill, ISBN9004132023, ISSN0169-8729