Louis Kauffman

Louis H. Kauffman
Kauffman in 2014
Born (1945-02-03) February 3, 1945 (age 79)
NationalityAmerican
Alma materPrinceton University
Massachusetts Institute of Technology
Known forKauffman polynomial
Scientific career
FieldsMathematics
InstitutionsUniversity of Illinois at Chicago
ThesisCyclic Branched-Covers, O(n)-Actions and Hypersurface Singularities (1972)
Doctoral advisorWilliam Browder

Louis Hirsch Kauffman (born February 3, 1945) is an American mathematician, mathematical physicist, and professor of mathematics in the Department of Mathematics, Statistics, and Computer Science at the University of Illinois at Chicago. He does research in topology, knot theory, topological quantum field theory, quantum information theory, and diagrammatic and categorical mathematics. He is best known for the introduction and development of the bracket polynomial and the Kauffman polynomial.

Biography

Kauffman was valedictorian of his graduating class at Norwood Norfolk Central High School in 1962. He received his B.S. at the Massachusetts Institute of Technology in 1966 and his Ph.D. in mathematics from Princeton University in 1972, with thesis Cyclic Branched-Covers, O(n)-Actions and Hypersurface Singularities written under the supervision of William Browder.[1]

Kauffman has worked at many places as a visiting professor and researcher, including the University of Zaragoza in Spain, the University of Iowa in Iowa City, the Institut des Hautes Études Scientifiques in Bures Sur Yevette, France, the Institut Henri Poincaré in Paris, France, the University of Bologna, Italy, the Federal University of Pernambuco in Recife, Brazil, and the Newton Institute in Cambridge, England.[2]

He is the founding editor and one of the managing editors of the Journal of Knot Theory and Its Ramifications, and editor of the World Scientific Book Series On Knots and Everything. He writes a column entitled Virtual Logic for the journal Cybernetics and Human Knowing. From 2005 to 2008, he was president of the American Society for Cybernetics. He plays clarinet in the ChickenFat Klezmer Orchestra in Chicago.

Work

Kauffman's research interests are in the fields of cybernetics, topology, and mathematical physics. His work is primarily on the topics of knot theory and its connections with statistical mechanics, quantum theory, algebra, combinatorics, and foundations.[3] In topology, he introduced and developed the bracket polynomial and Kauffman polynomial.

Bracket polynomial

In the mathematical field of knot theory, the bracket polynomial, also known as the Kauffman bracket, is a polynomial invariant of framed links. Although it is not an invariant of knots or links (as it is not invariant under type I Reidemeister moves), a suitably "normalized" version yields the famous knot invariant called the Jones polynomial. The bracket polynomial is important in unifying the Jones polynomial with other quantum invariants. In particular, Kauffman's interpretation of the Jones polynomial allows generalization to state sum invariants of 3-manifolds. Subsequently, the bracket polynomial formed the basis for Mikhail Khovanov's construction of a homology for knots and links, creating a stronger invariant than the Jones polynomial and such that the graded Euler characteristic of the Khovanov homology is equal to the original Jones polynomial. The generators for the chain complex of the Khovanov homology are states of the bracket polynomial decorated with elements of a Frobenius algebra.

Kauffman polynomial

The Kauffman polynomial is a 2-variable knot polynomial due to Louis Kauffman. It is defined as

where is the writhe and is a regular isotopy invariant which generalizes the bracket polynomial.

Discrete ordered calculus

In 1994, Kauffman and Tom Etter wrote a draft proposal for a non-commutative discrete ordered calculus (DOC), which they presented in revised form in 1996.[4] In the meantime, the theory was presented in a modified form by Kauffman and H. Pierre Noyes together with a presentation of a derivation of free space Maxwell's equations on this basis.[5]

Awards and honors

He won a Lester R. Ford Award (with Thomas Banchoff) in 1978.[6] Kauffman is the 1993 recipient of the Warren McCulloch award[7] of the American Society for Cybernetics and the 1996 award of the Alternative Natural Philosophy Association for his work in discrete physics. He is the 2014 recipient of the Norbert Wiener award of the American Society for Cybernetics.[8]

In 2012 he became a fellow of the American Mathematical Society.[9]

Publications

Louis H. Kauffman is author of several monographs on knot theory and mathematical physics. His publication list numbers over 170.[2] Books:

  • 1987, On Knots, Princeton University Press 498 pp.
  • 1993, Quantum Topology (Series on Knots & Everything), with Randy A. Baadhio, World Scientific Pub Co Inc, 394 pp.
  • 1994, Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds, with Sostenes Lins, Princeton University Press, 312 pp.
  • 1995, Knots and Applications (Series on Knots and Everything, Vol 6)
  • 1995, The Interface of Knots and Physics: American Mathematical Society Short Course January 2–3, 1995 San Francisco, California (Proceedings of Symposia in Applied Mathematics), with the American Mathematical Society.
  • 1998, Knots at Hellas 98: Proceedings of the International Conference on Knot Theory and Its Ramifications, with Cameron McA. Gordon, Vaughan F. R. Jones and Sofia Lambropoulou,
  • 1999, Ideal Knots, with Andrzej Stasiak and Vsevolod Katritch, World Scientific Publishing Company, 414 pp.
  • 2002, Hypercomplex Iterations: Distance Estimation and Higher Dimensional Fractals (Series on Knots and Everything, Vol 17), with Yumei Dang and Daniel Sandin.
  • 2006, Formal Knot Theory, Dover Publications, 272 pp.
  • 2007, Intelligence of Low Dimensional Topology 2006, with J. Scott Carter and Seiichi Kamada.
  • 2012, Knots and Physics (4th ed.), World Scientific Publishing Company, ISBN 978-981-4383-00-4

Articles and papers, a selection:

References

  1. ^ Louis Kauffman at the Mathematics Genealogy Project
  2. ^ a b "Math 569 - Knot Theory - Spring 2017".
  3. ^ "Presentation". Archived from the original on 2008-09-17. Retrieved 2007-09-26.
  4. ^ T. Etter, L.H. Kauffman, ANPA West Journal, vol. 6, no. 1, pp. 3–5
  5. ^ Louis H. Kauffman, H. Pierre Noyes, Discrete physics and the derivation of electromagnetism from the formalism of quantum mechanics, Proceedings of the Royal Society London A (1996), vol. 452, pp. 81–95
  6. ^ Kauffman, Louis; Banchoff, Thomas (1977). "Immersions and Mod-2 quadratic forms". The American Mathematical Monthly. 84: 168–185. doi:10.2307/2319486. JSTOR 2319486.
  7. ^ "ASC Awards". asc-cybernetics.org. Retrieved May 12, 2024.
  8. ^ About SSC: Awards, retrieved 2014-11-02.
  9. ^ List of Fellows of the American Mathematical Society, retrieved 2013-01-27.

Read other articles:

NarokKotaNarokKoordinat: Lua error in package.lua at line 80: module 'Module:ISO 3166/data/KE' not found.Negara KenyaCountyCounty Narok Narok (terkadang disebut Kota Narok) adalah kota di sebelah barat Nairobi yang mendukung perekonomian Kenya, di daerah barat daya negara itu. Terletak di sepanjang Great Rift Valley, di atas ketinggian 1.827 mdpl, Narok adalah ibu kota distrik County Narok dan menjadi pusat perdagangan utama di distrik tersebut. Narok memiliki populasi sekitar 40.000 jiw...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Concourse at Landmark Center – news · newspapers · books · scholar · JSTOR (April 2016) (Learn how and when to remove this template message) 33°54′58″N 84°21′18″W / 33.916°N 84.355°W / 33.916; -84.355 Commercial in Georgia, ...

 

Scottish merchant in England and India This article is about the British businessman and politician in India. For other persons of the same name, see George Yule (disambiguation). George Yule (17 April 1829 – 26 March 1892) was a Scottish merchant in England and India who served as the fourth President of the Indian National Congress in 1888 at Allahabad, the first non-Indian to hold that office.[1] He was founder of George Yule & Co. of London (now Synthomer, a FTSE 250 company...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

Halaman ini berisi artikel tentang sutradara India. Untuk pemain sepak bola Pakistan, lihat Mansoor Khan (pemain sepak bola). Mansoor KhanSutradara Mansoor Khan Hari Jadi ke-25 'Qayamat Se Qayamat Tak' 2013LahirHyderabad, IndiaPekerjaanProduser Film, Sutradara dan mansoorAyesha Hussain Mansoor Khan adalah seorang sutradara dan produser film India yang dikenal atas karya-karyanya dalam Bollywood. Putra dari pembuat film Nasir Hussain, Khan membuat debut penyutradaraannya dengan super-hit Qayam...

 

LenapeJennie Bobb dan putrinya, Nellie Longhat, di Oklahoma, 1915[1]Jumlah populasiSekitar 16.000[2]Daerah dengan populasi signifikan Amerika Serikat ( Oklahoma)11.951 (2010)[3]BahasaInggris, Munsee, dan Unami[2]AgamaKristen, Gereja Pribumi Amerika,agama suku tradisionalKelompok etnik terkaitSuku Lenape dan Algonquin lainnya Lenape (/ləˈnɑːpi/) adalah suku Pribumi Amerika di Kanada dan Amerika Serikat. Mereka juga disebut Indian Delaware karena ta...

Layering of ocean water due to density differences It has been suggested that Water column be merged into this article. (Discuss) Proposed since October 2023. Ocean stratification is the natural separation of an ocean's water into horizontal layers by density, which is generally stable because warm water floats on top of cold water, and heating is mostly from the sun, which reinforces that arrangement. Stratification is reduced by wind-forced mechanical mixing, but reinforced by convection (w...

 

Somali Pirate Abduwali Muse عبدالولي موسىBornAbduwali Abdulkadir Muse1990 (age 33–34)[1]Galkayo, SomaliaOther namesAbdulwali Abdukhad Muse,[1] Abdul Wali Muse, Wal-i-MusiCriminal statusIncarcerated on piracy charges. Sentenced to 33 years and 9 months imprisonment. Currently located at Federal Correctional Institution, Terre Haute, to be released 20 June 2038.Criminal chargeMaersk Alabama hijacking Abduwali Abdulkadir Muse عبدالولي موسى ...

 

Vahid Halilhodžić Halilhodžić dalam sebuah pertandingan antara Aljazair melawan Armenia 2014Informasi pribadiTanggal lahir 15 Oktober 1952 (umur 71)Tempat lahir Jablanica, SFR YugoslaviaTinggi 1,82 m (5 ft 11+1⁄2 in)Posisi bermain PenyerangInformasi klubKlub saat ini Trabzonspor (manajer)Karier junior1968–1971 VeležKarier senior*Tahun Tim Tampil (Gol)1971–1981 Velež 207 (103)1971–1972 → Neretva (pinjaman) ? (?)1981–1986 Nantes 163 (92)1986–1987 Par...

Sporting event delegationIran at the1958 Asian GamesIOC codeIRNNOCNational Olympic Committee of the Islamic Republic of IranWebsitewww.olympic.ir (in Persian and English)in TokyoCompetitors79 in 11 sportsFlag bearerMahmoud NamjooMedalsRanked 4th Gold 7 Silver 14 Bronze 11 Total 32 Asian Games appearances (overview)1951195419581962196619701974197819821986199019941998200220062010201420182022 Iran participated in the 1958 Asian Games held in the capital city of Tokyo, Japan. This count...

 

artikel ini tidak memiliki pranala ke artikel lain. Tidak ada alasan yang diberikan. Bantu kami untuk mengembangkannya dengan memberikan pranala ke artikel lain secukupnya. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Ini adalah ...

 

County in Tennessee, United States County in TennesseeClay CountyCountyClay County Courthouse in CelinaLocation within the U.S. state of TennesseeTennessee's location within the U.S.Coordinates: 36°33′N 85°32′W / 36.55°N 85.54°W / 36.55; -85.54Country United StatesState TennesseeFounded1870Named forHenry Clay[1]SeatCelinaLargest cityCelinaArea • Total259 sq mi (670 km2) • Land237 sq mi (610 ...

Human chromosome Chromosome 10Human chromosome 10 pair after G-banding.One is from mother, one is from father.Chromosome 10 pair in human male karyogram.FeaturesLength (bp)134,758,134 bp(CHM13)No. of genes706 (CCDS)[1]TypeAutosomeCentromere positionSubmetacentric[2](39.8 Mbp[3])Complete gene listsCCDSGene listHGNCGene listUniProtGene listNCBIGene listExternal map viewersEnsemblChromosome 10EntrezChromosome 10NCBIChromosome 10UCSCChromosome 10Full DNA sequencesRefSeqNC_...

 

Type of music from Finland This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Humppa – news · newspapers · books · scholar · JSTOR (February 2009) (Learn how and when to remove this message) Finnish Humppa-Band Eläkeläiset on stage Humppa is a type of music from Finland. It is related to jazz and very fast fo...

 

This article is about the town in the North-East Region of Singapore. For the island located in Punggol called Pulau Serangoon, see Coney Island, Singapore. For the river, see Sungei Serangoon. For the strait, see Serangoon Harbour. For the TV drama, see Serangoon Road. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Serangoon – ne...

English footballer (born 2001) Ryan Edmondson Edmondson warming up for Port Vale in 2022Personal informationFull name Ryan David EdmondsonDate of birth (2001-05-20) 20 May 2001 (age 23)Place of birth Harrogate, EnglandHeight 6 ft 2 in (1.88 m)[1]Position(s) StrikerTeam informationCurrent team Central Coast MarinersNumber 99Youth career2015–2017 York CitySenior career*Years Team Apps (Gls)2017 York City 1 (0)2017–2022 Leeds United 2 (0)2020–2021 → Aberdeen (...

 

Artículo principal: Hip hop (cultura) Véanse también: Rap y Rapear. Eminem en DJ Hero Party. Un rapero es un cantante del género rap,[1]​ que con su voz interpreta una improvisación o una letra ya escrita. El rapero normalmente acompaña su voz con un beat, una pista instrumental o a capela, sin generar variaciones en la tonalidad, melodía o afinación, ya que en el rap no es muy requerido, principalmente porque la técnica del rapero se basa más en el control del a...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مارس 2023) كعكة بنبريBanbury cake (بالإنجليزية) معلومات عامةالمنشأ المملكة المتحدة بلد المطبخ م�...

For other people named Aulay Macaulay, see Aulay Macaulay (disambiguation). Sir Aulay MacAulay of ArdincapleThe heraldic elements within the seal of Aulay MacAulay of Ardincaple, 1593Born16th centuryDiedDecember 1617Known forChief of Clan MacAulayTitleLaird of ArdincapleSuccessorAlexander MacAulay of Ardincaple (a first cousin)SpousesJoanna CunninghamMargaret CrawfordChildrenno childrenParent(s)Walter MacAulay of ArdincapleMargaret Drummond Sir Aulay MacAulay of Ardincaple (died 1617) wa...

 

British mathematician William Herrick Macaulay, Vice-Provost, Kings College Cambridge William Herrick Macaulay (16 November 1853 – 28 November 1936) was a British mathematician, Fellow and Vice-Provost of King's College, Cambridge, and close friend of Karl Pearson.[1] He also corresponded with John Maynard Keynes.[2] Family W. H. Macaulay was born in Hodnet, Shropshire, in 1853, son of the Rev. Samuel Herrick Macaulay, rector of Hodnet and grandson of the Rev. Aulay Macaulay...