Ligand field theory

Ligand field theory (LFT) describes the bonding, orbital arrangement, and other characteristics of coordination complexes.[1][2][3][4] It represents an application of molecular orbital theory to transition metal complexes. A transition metal ion has nine valence atomic orbitals - consisting of five nd, one (n+1)s, and three (n+1)p orbitals. These orbitals have the appropriate energy to form bonding interactions with ligands. The LFT analysis is highly dependent on the geometry of the complex, but most explanations begin by describing octahedral complexes, where six ligands coordinate with the metal. Other complexes can be described with reference to crystal field theory.[5] Inverted ligand field theory (ILFT) elaborates on LFT by breaking assumptions made about relative metal and ligand orbital energies.

History

Ligand field theory resulted from combining the principles laid out in molecular orbital theory and crystal field theory, which describe the loss of degeneracy of metal d orbitals in transition metal complexes. John Stanley Griffith and Leslie Orgel[6] championed ligand field theory as a more accurate description of such complexes, although the theory originated in the 1930s with the work on magnetism by John Hasbrouck Van Vleck. Griffith and Orgel used the electrostatic principles established in crystal field theory to describe transition metal ions in solution and used molecular orbital theory to explain the differences in metal-ligand interactions, thereby explaining such observations as crystal field stabilization and visible spectra of transition metal complexes. In their paper, they proposed that the chief cause of color differences in transition metal complexes in solution is the incomplete d orbital subshells.[6] That is, the unoccupied d orbitals of transition metals participate in bonding, which influences the colors they absorb in solution. In ligand field theory, the various d orbitals are affected differently when surrounded by a field of neighboring ligands and are raised or lowered in energy based on the strength of their interaction with the ligands.[6]

Bonding

σ-bonding (sigma bonding)

In an octahedral complex, the molecular orbitals created by coordination can be seen as resulting from the donation of two electrons by each of six σ-donor ligands to the d-orbitals on the metal. In octahedral complexes, ligands approach along the x-, y- and z-axes, so their σ-symmetry orbitals form bonding and anti-bonding combinations with the dz2 and dx2y2 orbitals. The dxy, dxz and dyz orbitals remain non-bonding orbitals. Some weak bonding (and anti-bonding) interactions with the s and p orbitals of the metal also occur, to make a total of 6 bonding (and 6 anti-bonding) molecular orbitals[7]

Ligand-Field scheme summarizing σ-bonding in the octahedral complex [Ti(H2O)6]3+.

In molecular symmetry terms, the six lone-pair orbitals from the ligands (one from each ligand) form six symmetry-adapted linear combinations (SALCs) of orbitals, also sometimes called ligand group orbitals (LGOs). The irreducible representations that these span are a1g, t1u and eg. The metal also has six valence orbitals that span these irreducible representations - the s orbital is labeled a1g, a set of three p-orbitals is labeled t1u, and the dz2 and dx2y2 orbitals are labeled eg. The six σ-bonding molecular orbitals result from the combinations of ligand SALCs with metal orbitals of the same symmetry.[8]

π-bonding (pi bonding)

π bonding in octahedral complexes occurs in two ways: via any ligand p-orbitals that are not being used in σ bonding, and via any π or π* molecular orbitals present on the ligand.

In the usual analysis, the p-orbitals of the metal are used for σ bonding (and have the wrong symmetry to overlap with the ligand p or π or π* orbitals anyway), so the π interactions take place with the appropriate metal d-orbitals, i.e. dxy, dxz and dyz. These are the orbitals that are non-bonding when only σ bonding takes place.

Example of π backbonding with carbonyl (CO) ligands.

One important π bonding in coordination complexes is metal-to-ligand π bonding, also called π backbonding. It occurs when the LUMOs (lowest unoccupied molecular orbitals) of the ligand are anti-bonding π* orbitals. These orbitals are close in energy to the dxy, dxz and dyz orbitals, with which they combine to form bonding orbitals (i.e. orbitals of lower energy than the aforementioned set of d-orbitals). The corresponding anti-bonding orbitals are higher in energy than the anti-bonding orbitals from σ bonding so, after the new π bonding orbitals are filled with electrons from the metal d-orbitals, ΔO has increased and the bond between the ligand and the metal strengthens. The ligands end up with electrons in their π* molecular orbital, so the corresponding π bond within the ligand weakens.

The other form of coordination π bonding is ligand-to-metal bonding. This situation arises when the π-symmetry p or π orbitals on the ligands are filled. They combine with the dxy, dxz and dyz orbitals on the metal and donate electrons to the resulting π-symmetry bonding orbital between them and the metal. The metal-ligand bond is somewhat strengthened by this interaction, but the complementary anti-bonding molecular orbital from ligand-to-metal bonding is not higher in energy than the anti-bonding molecular orbital from the σ bonding. It is filled with electrons from the metal d-orbitals, however, becoming the HOMO (highest occupied molecular orbital) of the complex. For that reason, ΔO decreases when ligand-to-metal bonding occurs.

The greater stabilization that results from metal-to-ligand bonding is caused by the donation of negative charge away from the metal ion, towards the ligands. This allows the metal to accept the σ bonds more easily. The combination of ligand-to-metal σ-bonding and metal-to-ligand π-bonding is a synergic effect, as each enhances the other.

As each of the six ligands has two orbitals of π-symmetry, there are twelve in total. The symmetry adapted linear combinations of these fall into four triply degenerate irreducible representations, one of which is of t2g symmetry. The dxy, dxz and dyz orbitals on the metal also have this symmetry, and so the π-bonds formed between a central metal and six ligands also have it (as these π-bonds are just formed by the overlap of two sets of orbitals with t2g symmetry.)

High and low spin and the spectrochemical series

The six bonding molecular orbitals that are formed are "filled" with the electrons from the ligands, and electrons from the d-orbitals of the metal ion occupy the non-bonding and, in some cases, anti-bonding MOs. The energy difference between the latter two types of MOs is called ΔO (O stands for octahedral) and is determined by the nature of the π-interaction between the ligand orbitals with the d-orbitals on the central atom. As described above, π-donor ligands lead to a small ΔO and are called weak- or low-field ligands, whereas π-acceptor ligands lead to a large value of ΔO and are called strong- or high-field ligands. Ligands that are neither π-donor nor π-acceptor give a value of ΔO somewhere in-between.

The size of ΔO determines the electronic structure of the d4 - d7 ions. In complexes of metals with these d-electron configurations, the non-bonding and anti-bonding molecular orbitals can be filled in two ways: one in which as many electrons as possible are put in the non-bonding orbitals before filling the anti-bonding orbitals, and one in which as many unpaired electrons as possible are put in. The former case is called low-spin, while the latter is called high-spin. A small ΔO can be overcome by the energetic gain from not pairing the electrons, leading to high-spin. When ΔO is large, however, the spin-pairing energy becomes negligible by comparison and a low-spin state arises.

The spectrochemical series is an empirically-derived list of ligands ordered by the size of the splitting Δ that they produce. It can be seen that the low-field ligands are all π-donors (such as I), the high field ligands are π-acceptors (such as CN and CO), and ligands such as H2O and NH3, which are neither, are in the middle.

I < Br < S2− < SCN < Cl < NO3 < N3 < F < OH < C2O42− < H2O < NCS < CH3CN < py (pyridine) < NH3 < en (ethylenediamine) < bipy (2,2'-bipyridine) < phen (1,10-phenanthroline) < NO2 < PPh3 < CN < CO

See also

References

  1. ^ Ballhausen, Carl Johan,"Introduction to Ligand Field Theory",McGraw-Hill Book Co., New York, 1962
  2. ^ Griffith, J.S. (2009). The Theory of Transition-Metal Ions (re-issue ed.). Cambridge University Press. ISBN 978-0521115995.
  3. ^ Schläfer, H. L.; Gliemann, G. "Basic Principles of Ligand Field Theory" Wiley Interscience: New York; 1969
  4. ^ Bhatt, Vasishta (2016-01-01), Bhatt, Vasishta (ed.), "Chapter 1 - Basic Coordination Chemistry", Essentials of Coordination Chemistry, Academic Press, pp. 1–35, doi:10.1016/b978-0-12-803895-6.00001-x, ISBN 978-0-12-803895-6, retrieved 2024-06-18
  5. ^ G. L. Miessler and D. A. Tarr "Inorganic Chemistry" 3rd Ed, Pearson/Prentice Hall, ISBN 0-13-035471-6.
  6. ^ a b c Griffith, J.S. and L.E. Orgel. "Ligand Field Theory". Q. Rev. Chem. Soc. 1957, 11, 381-393
  7. ^ "10.3.1: Ligand Field Theory - Molecular Orbitals for an Octahedral Complex". Chemistry LibreTexts. 2021-09-03. Retrieved 2023-12-07.
  8. ^ "10.3.1: Ligand Field Theory - Molecular Orbitals for an Octahedral Complex". Chemistry LibreTexts. 2021-09-03. Retrieved 2023-12-07.

Read other articles:

Archaeological period This article is about the historical/archaeological period known as the Iron Age. For the mythological Iron Age, see Ages of Man. Part of a series on theIron Age ↑ Bronze Age By region Ancient Near East (1200–550 BC) Bronze Age collapse (1200–1150 BC) Anatolia, Caucasus, Levant Europe Aegean (1200–700 BC) Italy (1100–700 BC) Balkans (1100 BC – 150 AD) Eastern Europe (900 – 650 BC) Central Europe (800 – 50 BC) Great Britain (800 BC – 100 AD) Northern Eur...

 

Nama ini menggunakan cara penamaan Spanyol: nama keluarga pertama atau paternalnya adalah Ortega dan nama keluarga kedua atau maternalnya adalah Gaona. Amancio OrtegaBerkas:Amancio Ortega 2015 Photograph.jpgAmancio Ortega, Oktober 2013LahirAmancio Ortega Gaona28 Maret 1936 (umur 88)Busdongo de Arbás, León, SpanyolTempat tinggalA Coruña, SpanyolKebangsaanSpanyolPekerjaanPebisnisDikenal atasPendiri Inditex GroupKekayaan bersih US$79,5 miliar (7 September 2016)[1]Anggot...

 

Emily Donelson Ibu Negara Amerika Serikat ke-7Masa jabatan4 Maret 1829 – 19 Desember 1836 PendahuluLouisa AdamsPenggantiSarah Yorke Jackson Informasi pribadiLahir(1807-06-01)1 Juni 1807Donelson, TennesseeMeninggal19 Desember 1836(1836-12-19) (umur 29)Nashville, TennesseeSuami/istriAndrew Jackson A.J. DonelsonHubunganJohn Donelson (father)Rachel Donelson Jackson (aunt)PekerjaanIbu Negara Amerika SerikatSunting kotak info • L • B Emily Tennessee Donelson (1 Juni 18...

List of events ← 2015 2014 2013 2016 in Japan → 2017 2018 2019 Decades: 1990s 2000s 2010s 2020s See also:Other events of 2016History of Japan  • Timeline  • Years The following lists events that happened during 2016 in Japan. Year: Heisei 28 Incumbents Emperor: Akihito[1] Prime Minister: Shinzō Abe (L–Yamaguchi) Chief Cabinet Secretary: Yoshihide Suga (L–Kanagawa) Chief Justice of the Supreme Court: Itsurō Terada President of the House...

 

Street in St. Petersburg, Russia 59°55′44″N 30°18′30″E / 59.9288°N 30.3082°E / 59.9288; 30.3082 View to the beginning of the avenue from No. 11 Voznesensky Prospekt (Russian: Вознесенский проспект) is a 1.8 km long street in Admiralteysky District of Saint Petersburg, Russia. Crossing Saint Isaac's Square, the Moika (Blue Bridge) and Griboyedov Canal (Voznesensky Bridge), the street spans from Admiralteysky Prospekt to Izmaylovsky B...

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

Cycling race 2018 Gent–Wevelgem (women's race)2018 UCI Women's World Tour, race 5 of 23Race detailsDates25 March 2018Stages1Distance142.6 km (88.61 mi)Winning time3h 41' 00Results  Winner  Marta Bastianelli (ITA) (Alé–Cipollini)  Second  Jolien D'Hoore (BEL) (Mitchelton–Scott)  Third  Lisa Klein (GER) (Canyon–SRAM)← 2017 2019 → The seventh running of Gent–Wevelgem's women's race (also known as Gent-Wevelge...

 

Map of Zimbabwe This is a list of cities, towns and villages in Zimbabwe. See also: Place names in Zimbabwe. Cities This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (September 2017) (Learn how and when to remove this message) Harare Bulawayo Mutare Kwekwe Kadoma Cities in Zimbabwe[1] City Province Census 1982 Census 1992 Census 2002 Census 2012 Census 2022 Harare Harare ...

 

Mongolie, pays-zone exempte d'arme nucléaire En 1992, le président de la Mongolie Punsalmaagiyn Ochirbat a annoncé que son pays envisageait de devenir un « pays-zone exempte d'arme nucléaire ». Les changements géopolitiques engendrés par la chute de l'Union soviétique et, en particulier pour le pays, le retrait des troupes russes de son territoire, ont donné à Oulan-Bator l'opportunité de proclamer sa neutralité politique. Bien que peu orthodoxe, l'initiative mongole de...

King of Ephyra in Greek mythology For other uses, see Sisyphus (disambiguation). Not to be confused with Syphilis. Persephone supervising Sisyphus in the Underworld, Attic black-figure amphora, c. 530 BC, Staatliche Antikensammlungen[1] Sisyphus and Amphiaraus, copy of mural in François Tomb from Vulci made in 4th century BC In Greek mythology, Sisyphus or Sisyphos (/ˈsɪsɪfəs/; Ancient Greek: Σίσυφος Sísyphos) was the founder and king of Ephyra (now known as Corinth...

 

Ayub 33Kitab Ayub lengkap pada Kodeks Leningrad, dibuat tahun 1008.KitabKitab AyubKategoriKetuvimBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen18← pasal 32 pasal 34 → Ayub 33 (disingkat Ayb 33) adalah bagian dari Kitab Ayub di Alkitab Ibrani dan Perjanjian Lama dalam Alkitab Kristen. Kitab ini menceritakan riwayat Ayub, seorang yang saleh, dan pencobaan yang dialaminya.[1][2] Teks Naskah sumber utama: Masoretik, Septuaginta dan Naskah Laut Mati. Pas...

 

Disambiguazione – Se stai cercando altri significati, vedi Unione europea (disambigua). Disambiguazione – UE rimanda qui. Se stai cercando altri significati, vedi Ue (disambigua). Unione europeavedi i nomi nelle lingue ufficiali Bandiera dell'Europa AbbreviazioneUE, Ue TipoUnione sovranazionale[1][2] Fondazione CEE: trattato di Roma, 25 marzo 1957 UE: trattato di Maastricht, 7 febbraio 1992 Scopoesercizio di parte della sovranità nazionale degli Stati membri...

Untuk daftar Direktur Jenderal Belanda yang berkuasa di New Amsterdam sebagai bagian dari New Netherland antara 1625 dan 1664, lihat: Direktur Jenderal New Netherland. Wali kota New York City adalah kepala eksekutif pemerintah New York City, sebagaimana ditetapkan oleh Charter City of New York. Daftar ini hingga tahun 1897 mencakup wali kota dari (lebih kurang) wilayah yang kini dianggap sebagai Manhattan dan bagian-bagian dari The Bronx saja. Kelima borough ini dikonsolidasikan pada 1898. Li...

 

「加東康一」、「加藤公一」、「加藤幸一」、あるいは「加藤浩一」とは別人です。 日本の政治家加藤 紘一かとう こういち 1985年、首相官邸にて生年月日 (1939-06-17) 1939年6月17日出生地 日本、愛知県名古屋市[1]没年月日 (2016-09-09) 2016年9月9日(77歳没)死没地 日本、東京都出身校 東京大学法学部第3類東京大学法学部第2類国立台湾大学大学院ハーバード大学大学院...

 

Pour les articles homonymes, voir Gautier de Brienne. Gautier IV de BrienneFonctionsComte de BrienneComte de Jaffa et d'AscalonTitres de noblesseComte de Brienne1205-1246Prédécesseur Gautier III de BrienneSuccesseur Jean de BrienneComte de Jaffa1221-1246Successeur Jean d'IbelinBiographieNaissance 1205Décès 1244 ou 1246Le CaireActivité FeudataireFamille Maison de BriennePère Gautier III de BrienneMère Elvire de SicileFratrie Marguerite de Reynel (d)Conjoint Marie de Lusi...

Head of the district council of Masterton, New Zealand Mayor of MastertonIncumbentGary Caffellsince 9 October 2022StyleHis/Her WorshipTerm lengthThree yearsInaugural holderR.G WilliamsFormation1877 The Mayor of Masterton is the head of the municipal government of Masterton, New Zealand, and presides over the Masterton District Council. The Mayor is directly elected using First Past the Post.The Mayor is assisted by the Deputy Mayor of Masterton. The current Mayor is Gary Caffell, elected...

 

(308933) 2006 SQ372Астероид Открытие Первооткрыватель SDSS Место обнаружения Обсерватория Апачи-Пойнт[1] Дата обнаружения 27 сентября 2006 Альтернативные обозначения 2006 SQ372 Категория объект рассеянного диска Орбитальные характеристики Эпоха 27 августа 2011 Эксцентриситет (e) 0,9749394...

 

Championnat sud-américain de 1956 Généralités Sport Football Organisateur(s) CONMEBOL Édition 24e Lieu(x) Uruguay Date du 21 janvier 1956au 15 février 1956 Participants 6 Matchs joués 15 Affluence 568 000 spectateurs Site(s) Stade Centenario(Montevideo) Palmarès Tenant du titre Argentine Vainqueur Uruguay Deuxième Chili Troisième Argentine Buts 38 (2,5 par match) Meilleur(s) buteur(s) Hormazábal (4) Navigation Chili 1955 Pérou 1957 modifier Le Championnat sud-américain de f...

British politician (born 1951) The Right Honourable SirJohn RedwoodOfficial portrait, 2020Shadow Secretary of State for DeregulationIn office6 May 2005 – 5 December 2005LeaderMichael HowardPreceded byPosition establishedSucceeded byPosition abolishedShadow Secretary of State for Environment, Transport and the RegionsIn office15 June 1999 – 2 February 2000LeaderWilliam HaguePreceded byGillian ShephardSucceeded byArchie NormanShadow Secretary of State for Trade and Industr...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (أغسطس 2024) علم سكون الموائعصنف فرعي من ميكانيكا الموائع جزء من hydromechanics (en) — سكونيات تعديل - تعديل مصدري - تعديل ويكي ب...