Crystal field theory

In molecular physics, crystal field theory (CFT) describes the breaking of degeneracies of electron orbital states, usually d or f orbitals, due to a static electric field produced by a surrounding charge distribution (anion neighbors). This theory has been used to describe various spectroscopies of transition metal coordination complexes, in particular optical spectra (colors). CFT successfully accounts for some magnetic properties, colors, hydration enthalpies, and spinel structures of transition metal complexes, but it does not attempt to describe bonding. CFT was developed by physicists Hans Bethe[1] and John Hasbrouck van Vleck[2] in the 1930s. CFT was subsequently combined with molecular orbital theory to form the more realistic and complex ligand field theory (LFT), which delivers insight into the process of chemical bonding in transition metal complexes. CFT can be complicated further by breaking assumptions made of relative metal and ligand orbital energies, requiring the use of inverted ligand field theory (ILFT) to better describe bonding.

Overview

According to crystal field theory, the interaction between a transition metal and ligands arises from the attraction between the positively charged metal cation and the negative charge on the non-bonding electrons of the ligand. The theory is developed by considering energy changes of the five degenerate d-orbitals upon being surrounded by an array of point charges consisting of the ligands. As a ligand approaches the metal ion, the electrons from the ligand will be closer to some of the d-orbitals and farther away from others, causing a loss of degeneracy. The electrons in the d-orbitals and those in the ligand repel each other due to repulsion between like charges. Thus the d-electrons closer to the ligands will have a higher energy than those further away which results in the d-orbitals splitting in energy. This splitting is affected by the following factors:

  • the nature of the metal ion.
  • the metal's oxidation state. A higher oxidation state leads to a larger splitting relative to the spherical field.
  • the arrangement of the ligands around the metal ion.
  • the coordination number of the metal (i.e. tetrahedral, octahedral...)
  • the nature of the ligands surrounding the metal ion. The stronger the effect of the ligands then the greater the difference between the high and low energy d groups.

The most common type of complex is octahedral, in which six ligands form the vertices of an octahedron around the metal ion. In octahedral symmetry the d-orbitals split into two sets with an energy difference, Δoct (the crystal-field splitting parameter, also commonly denoted by 10Dq for ten times the "differential of quanta"[3][4]) where the dxy, dxz and dyz orbitals will be lower in energy than the dz2 and dx2-y2, which will have higher energy, because the former group is farther from the ligands than the latter and therefore experiences less repulsion. The three lower-energy orbitals are collectively referred to as t2g, and the two higher-energy orbitals as eg. These labels are based on the theory of molecular symmetry: they are the names of irreducible representations of the octahedral point group, Oh.(see the Oh character table) Typical orbital energy diagrams are given below in the section High-spin and low-spin.

Tetrahedral complexes are the second most common type; here four ligands form a tetrahedron around the metal ion. In a tetrahedral crystal field splitting, the d-orbitals again split into two groups, with an energy difference of Δtet. The lower energy orbitals will be dz2 and dx2-y2, and the higher energy orbitals will be dxy, dxz and dyz - opposite to the octahedral case. Furthermore, since the ligand electrons in tetrahedral symmetry are not oriented directly towards the d-orbitals, the energy splitting will be lower than in the octahedral case. Square planar and other complex geometries can also be described by CFT.

The size of the gap Δ between the two or more sets of orbitals depends on several factors, including the ligands and geometry of the complex. Some ligands always produce a small value of Δ, while others always give a large splitting. The reasons behind this can be explained by ligand field theory. The spectrochemical series is an empirically-derived list of ligands ordered by the size of the splitting Δ that they produce (small Δ to large Δ; see also this table):

I < Br < S2− < SCN (S–bonded) < Cl < NO3 < N3 < F < OH < C2O42− < H2O < NCS (N–bonded) < CH3CN < py < NH3 < en < 2,2'-bipyridine < phen < NO2 < PPh3 < CN < CO.

It is useful to note that the ligands producing the most splitting are those that can engage in metal to ligand back-bonding.

The oxidation state of the metal also contributes to the size of Δ between the high and low energy levels. As the oxidation state increases for a given metal, the magnitude of Δ increases. A V3+ complex will have a larger Δ than a V2+ complex for a given set of ligands, as the difference in charge density allows the ligands to be closer to a V3+ ion than to a V2+ ion. The smaller distance between the ligand and the metal ion results in a larger Δ, because the ligand and metal electrons are closer together and therefore repel more.

High-spin and low-spin

Low Spin [Fe(NO2)6]3− crystal field diagram

Ligands which cause a large splitting Δ of the d-orbitals are referred to as strong-field ligands, such as CN and CO from the spectrochemical series. In complexes with these ligands, it is unfavourable to put electrons into the high energy orbitals. Therefore, the lower energy orbitals are completely filled before population of the upper sets starts according to the Aufbau principle. Complexes such as this are called "low spin". For example, NO2 is a strong-field ligand and produces a large Δ. The octahedral ion [Fe(NO2)6]3−, which has 5 d-electrons, would have the octahedral splitting diagram shown at right with all five electrons in the t2g level. This low spin state therefore does not follow Hund's rule.

High Spin [FeBr6]3− crystal field diagram

Conversely, ligands (like I and Br) which cause a small splitting Δ of the d-orbitals are referred to as weak-field ligands. In this case, it is easier to put electrons into the higher energy set of orbitals than it is to put two into the same low-energy orbital, because two electrons in the same orbital repel each other. So, one electron is put into each of the five d-orbitals in accord with Hund's rule, and "high spin" complexes are formed before any pairing occurs. For example, Br is a weak-field ligand and produces a small Δoct. So, the ion [FeBr6]3−, again with five d-electrons, would have an octahedral splitting diagram where all five orbitals are singly occupied.

In order for low spin splitting to occur, the energy cost of placing an electron into an already singly occupied orbital must be less than the cost of placing the additional electron into an eg orbital at an energy cost of Δ. As noted above, eg refers to the dz2 and dx2-y2 which are higher in energy than the t2g in octahedral complexes. If the energy required to pair two electrons is greater than Δ, the energy cost of placing an electron in an eg, high spin splitting occurs.

The crystal field splitting energy for tetrahedral metal complexes (four ligands) is referred to as Δtet, and is roughly equal to 4/9Δoct (for the same metal and same ligands). Therefore, the energy required to pair two electrons is typically higher than the energy required for placing electrons in the higher energy orbitals. Thus, tetrahedral complexes are usually high-spin.

The use of these splitting diagrams can aid in the prediction of magnetic properties of co-ordination compounds. A compound that has unpaired electrons in its splitting diagram will be paramagnetic and will be attracted by magnetic fields, while a compound that lacks unpaired electrons in its splitting diagram will be diamagnetic and will be weakly repelled by a magnetic field.

Stabilization energy

The crystal field stabilization energy (CFSE) is the stability that results from placing a transition metal ion in the crystal field generated by a set of ligands. It arises due to the fact that when the d-orbitals are split in a ligand field (as described above), some of them become lower in energy than before with respect to a spherical field known as the barycenter in which all five d-orbitals are degenerate. For example, in an octahedral case, the t2g set becomes lower in energy than the orbitals in the barycenter. As a result of this, if there are any electrons occupying these orbitals, the metal ion is more stable in the ligand field relative to the barycenter by an amount known as the CFSE. Conversely, the eg orbitals (in the octahedral case) are higher in energy than in the barycenter, so putting electrons in these reduces the amount of CFSE.

Octahedral crystal field stabilization energy. Degenerate atomic d-orbitals of a free metal ion (left), destabilization of d-orbitals within a spherical negative electric field (center), and loss of degeneracy relative to the spherical field when ligands are treated as point charges in an octahedral geometry.

If the splitting of the d-orbitals in an octahedral field is Δoct, the three t2g orbitals are stabilized relative to the barycenter by 2/5 Δoct, and the eg orbitals are destabilized by 3/5 Δoct. As examples, consider the two d5 configurations shown further up the page. The low-spin (top) example has five electrons in the t2g orbitals, so the total CFSE is 5 x 2/5 Δoct = 2Δoct. In the high-spin (lower) example, the CFSE is (3 x 2/5 Δoct) - (2 x 3/5 Δoct) = 0 - in this case, the stabilization generated by the electrons in the lower orbitals is canceled out by the destabilizing effect of the electrons in the upper orbitals.

Optical properties

The optical properties (details of absorption and emission spectra) of many coordination complexes can be explained by Crystal Field Theory. Often, however, the deeper colors of metal complexes arise from more intense charge-transfer excitations.[5]

Geometries and splitting diagrams

Name Shape Energy diagram
Octahedral
Pentagonal bipyramidal
Square antiprismatic
Square planar
Square pyramidal
Tetrahedral
Trigonal bipyramidal

See also

References

  1. ^ Bethe, H. (1929). "Termaufspaltung in Kristallen". Annalen der Physik (in German). 395 (2): 133–208. Bibcode:1929AnP...395..133B. doi:10.1002/andp.19293950202. ISSN 1521-3889.
  2. ^ Van Vleck, J. (1932). "Theory of the Variations in Paramagnetic Anisotropy Among Different Salts of the Iron Group". Physical Review. 41 (2): 208–215. Bibcode:1932PhRv...41..208V. doi:10.1103/PhysRev.41.208.
  3. ^ Penney, William G.; Schlapp, Robert (1932). "The Influence of Crystalline Fields on the Susceptibilities of Salts of Paramagnetic Ions. I. The Rare Earths, Especially Pr and Nd". Physical Review. 41 (2): 194–207. Bibcode:1932PhRv...41..194P. doi:10.1103/PhysRev.41.194. ISSN 0031-899X.
  4. ^ Schlapp, Robert; Penney, William G. (1932). "Influence of Crystalline Fields on the Susceptibilities of Salts of Paramagnetic Ions. II. The Iron Group, Especially Ni, Cr and Co". Physical Review. 42 (5): 666–686. Bibcode:1932PhRv...42..666S. doi:10.1103/PhysRev.42.666. ISSN 0031-899X.\
  5. ^ G. L. Miessler and D. A. Tarr “Inorganic Chemistry” 2nd Ed. (Prentice Hall 1999), p.379 ISBN 0-13-841891-8.

Further reading

Read other articles:

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Marcelo Peralta – berita · surat kabar · buku · cendekiawan · JSTOR (March 2020) Marcelo Peralta (5 Maret 1961 – 10 Maret 2020)) adalah pemain musik, guru, komposer, dan arranger dari Argentin...

 

Golden CrossPoster promosi untuk Golden CrossGenreDrama Balas dendam Romansa ThrillerDitulis olehYoo Hyun-miSutradaraHong Suk-goo[1] Kim Jong-yeonPemeranKim Kang-wooLee Si-youngUm Ki-joonHan Eun-jungNegara asalKorea SelatanBahasa asliKoreaJmlh. episode20ProduksiProduser eksekutifLee Gun-joonLokasi produksiKoreaDurasi70 menit Rabu dan Kamis pukul 22:00 (WSK)Rumah produksiPan EntertainmentDistributorKBSRilis asliJaringanKBSRilis9 April (2014-04-09) –19 Juni 2014 (2014-...

 

Skema penyepuhan tembaga (Cu) ke suatu permukaan konduktif (Me). Tembaga pada akhirnya akan termakan habis untuk menggantikan ion tembaga yang terdapat di larutan. Penyepuhan[1] atau sepuh listrik (Inggris: electrodepositioncode: en is deprecated ) adalah proses untuk menghasilkan lapisan logam pada permukaan benda padat melalui reaksi redoks menggunakan arus listrik searah. Bagian yang akan dilapisi berperan sebagai katoda atau elektroda negatif dari sel elektrolisis. Elektrolit adal...

Pour les articles homonymes, voir Ministère de la Justice. Ministère japonais de la Justice (ja)法務省HistoireFondation 15 février 1948Prédécesseur Attorney General's Office (d)CadreType Ministère japonaisForme juridique Agence publiqueSiège 1-1-1 Kasumigaseki, Chiyoda, TokyoPays  JaponCoordonnées 35° 40′ 35″ N, 139° 45′ 12″ ELangue JaponaisOrganisationEffectif 55 231 employés (31/12/2023)Ministre Ryuji KoizumiBudget 725 044&...

 

Terrorist attacks in Jakarta, Indonesia 2017 Jakarta bombingsPart of terrorism in Indonesia2017 Jakarta bombings (Jakarta)Show map of Jakarta2017 Jakarta bombings (Indonesia)Show map of IndonesiaAttack site shown on a map of IndonesiaLocationJakarta, IndonesiaCoordinates6°13′45.56″S 106°51′07.38″E / 6.2293222°S 106.8520500°E / -6.2293222; 106.8520500Date24 May 2017; 6 years ago (2017-05-24) 9:00 – 9:05 WIB (UTC+07:00)Attack typeSuicide b...

 

Bet on ItSingel oleh Zac Efrondari album High School Musical 2Dirilis11 Desember 2007Direkam2007GenrePop remajaDurasi3:18LabelWalt DisneyPencipta Antonina Armato Tim James Produser Armato James Kronologi singel High School Musical Everyday (2007) Bet on It (2007) Now or Never (2008) Bet on It adalah lagu dari Disney Channel Original Movies, High School Musical 2. Lagu ini ditampilkan di soundtrack film dan dibawakan oleh Zac Efron sebagai Troy Bolton. Komposisi Bet on It telah digambarka...

Map of Lower and Upper Egypt Mesir Kuno terbagi atas dua wilayah, yang dikenal sebagai Mesir Hulu dan Mesir Hilir. Di bagian utara adalah Mesir Hilir di mana Sungai Nil berakhir dengan beberapa muaranya dan membentuk Delta Sungai Nil. Di bagian selatan adalah Mesir Hulu, yang membujur sampai ke Syene. Kedua negara, Mesir Atas dan Bawah bersatu pada kira-kira tahun 3100 SM, tetapi masing-masing masih mempertahankan kerajaannya. Firaun merupakan pemimpin kedua kerajaan tersebut. Penamaan Hulu d...

 

يونيفرسال انتراكتيفيونيفرسال انتراكتيفالشعارمعلومات عامةالبلد الولايات المتحدة التأسيس 1993النوع شركة ألعابالمقر الرئيسي لوس أنجلوس، كاليفورنيا، الولايات المتحدةالمنظومة الاقتصاديةالصناعة الترفيه التفاعلي صناعة ألعاب الفيديوالمنتجات ألعاب الفيديومناطق الخدمة الول...

 

Radio station in Windsor Locks, ConnecticutWUCSWindsor Locks, ConnecticutBroadcast areaGreater HartfordFrequency97.9 MHz (HD Radio)BrandingFox Sports 97.9ProgrammingFormatSports radioAffiliationsFox Sports RadioNew York Yankees Radio NetworkOwnershipOwneriHeartMedia, Inc.(iHM Licenses, LLC)Sister stationsWHCN, WKSS, WPOP, WWYZHistoryFirst air dateJuly 1990; 33 years ago (1990-07)[1]Former call signsWPKX (1990–2012)Call sign meaningUniversity of Connecticut—S...

Scientific instrument This article is about microscopes, the instruments, in general. For light microscopes, see Optical microscope. For other uses, see Microscope (disambiguation). This scientific article needs additional citations to secondary or tertiary sources such as review articles, monographs, or textbooks. Please also establish the relevance for any primary research articles cited. Unsourced or poorly sourced material may be challenged and removed. (April 2017) (Learn how and when to...

 

English poet (1916–2018) The Right HonourableThe Lady Wilson of RievaulxMary Wilson in 1970BornGladys Mary Baldwin(1916-01-12)12 January 1916Diss, EnglandDied6 June 2018(2018-06-06) (aged 102)London, EnglandResting placeSt Mary's Old Church, St Mary's, Isles of ScillyOccupationsPoetstenographerKnown forSpouse of the prime minister of the United Kingdom (1964–1970, 1974–1976)Political partyLabourSpouse Harold Wilson ​ ​(m. 1940; died&#...

 

Novel by Nicholas Sparks Not to be confused with The Lucky Ones (book), by Rachel Cusk. The Lucky One First editionAuthorNicholas SparksCountryUnited StatesLanguageEnglishGenreRomanceDramaWarPublisherGrand Central PublishingPublication date2008Media typePrint (hardcover)Pages386 ppISBN0-446-57993-9OCLC233573959Dewey Decimal813/.54 22LC ClassPS3569.P363 L83 2008Preceded byThe Choice  The Lucky One is a 2008 romance novel by American writer Nicholas Sparks. U.S. Marine Logan...

Keuskupan Agung AcerenzaArchidioecesis AcheruntinaKatolik Katedral AcerenzaLokasiNegara ItaliaProvinsi gerejawiPotenza-Muro Lucano-Marsico NuovoStatistikLuas1.250 km2 (480 sq mi)Populasi- Total- Katolik(per 2011)42.81542,382 (99%)Paroki21InformasiDenominasiGereja KatolikRitusRitus RomaPendirianAbad ke-4KatedralCattedrale dell’Assunzione della B. Maria VergineKepemimpinan kiniPausFransiskusUskup AgungFrancesco SirufoEmeritusMichele ScandiffioSitus webw...

 

Запрос «Пугачёва» перенаправляется сюда; см. также другие значения. Алла Пугачёва На фестивале «Славянский базар в Витебске», 2016 год Основная информация Полное имя Алла Борисовна Пугачёва Дата рождения 15 апреля 1949(1949-04-15) (75 лет) Место рождения Москва, СССР[1]...

 

Cencerro. Patrón rítmico típico El cencerro es un instrumento musical de percusión. Modernamente se fabrican pequeñas campanas o cencerros sin badajo específicos para ser usados como instrumentos musicales. Pueden estar fijos a un soporte y son idiófonos sacudidos. Se percuten con baquetas de madera especialmente diseñadas para este instrumento. Normalmente, se fabrican en cobre, acero o en aleación de acero. Se utilizan de distintos tamaños para conseguir diversos sonidos dependien...

Railway station in China This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Guojiaying railway station – news · newspapers · books · scholar · JSTOR (March 2010) (Learn how and when to remove this message) Guojiaying railway station is a station of Jingbao Railway in Inner Mongolia. See also List of stations on Jingbao railway v...

 

American actor (1904–1972) Bruce CabotCabot in Sinners in Paradise (1938)BornEtienne Pelissier Jacques de Bujac(1904-04-20)April 20, 1904Carlsbad, Territory of New Mexico, U.S.DiedMay 3, 1972(1972-05-03) (aged 68)Woodland Hills, California, U.S.OccupationActorYears active1931–1971Spouses Gracy Mary Mather Smith ​ ​(m. 1926; div. 1930)​ Adrienne Ames ​ ​(m. 1933; div. 1937)​ France...

 

Attitudes and behaviors towards sex in ancient Rome Satyr and nymph, mythological symbols of sexuality on a mosaic from a bedroom in Pompeii. Sexual attitudes and behaviors in ancient Rome are indicated by art, literature, and inscriptions, and to a lesser extent by archaeological remains such as erotic artifacts and architecture. It has sometimes been assumed that unlimited sexual license was characteristic of ancient Rome,[1][2] but sexuality was not excluded as a concern of...

У этого термина существуют и другие значения, см. Преображенский. ПосёлокПреображенский 54°22′52″ с. ш. 43°49′41″ в. д.HGЯO Страна  Россия Субъект Федерации Мордовия Муниципальный район Краснослободский Сельское поселение Старозубаревское История и география П�...

 

Matori Abdul Djalil Menteri Pertahanan Indonesia ke-23Masa jabatan10 Agustus 2001 – 20 Oktober 2004PresidenMegawati SoekarnoputriPendahuluAgum GumelarPenggantiJuwono Sudarsono Informasi pribadiLahir(1942-07-11)11 Juli 1942Salatiga, Jawa Tengah, Masa Pendudukan JepangMeninggal12 Mei 2007(2007-05-12) (umur 64)Jakarta, IndonesiaKebangsaanIndonesiaPartai politikPKBPekerjaanPolitisiSunting kotak info • L • B H. Matori Abdul Djalil, S.H. (11 Juli 1942 –&...