If oxygen is present in the cell, many organisms will bypass fermentation and undergo cellular respiration; however, facultative anaerobic organisms will both ferment and undergo respiration in the presence of oxygen.[3] Sometimes even when oxygen is present and aerobic metabolism is happening in the mitochondria, if pyruvate is building up faster than it can be metabolized, the fermentation will happen anyway.
In homolactic fermentation, one molecule of glucose is ultimately converted to two molecules of lactic acid. Heterolactic fermentation, by contrast, yields carbon dioxide and ethanol in addition to lactic acid, in a process called the phosphoketolase pathway.[1]
History
Several chemists discovered during the 19th century some fundamental concepts of the domain of organic chemistry. One of them for example was the French chemist Joseph Louis Gay-Lussac, who was especially interested in fermentation processes, and he passed this fascination to one of his best students, Justus von Liebig. With a difference of some years, each of them described, together with colleagues, the chemical structure of the lactic acid molecule as we know it today. They had a purely chemical understanding of the fermentation process, which means that you can't see it using a microscope, and that it can only be optimized by chemical catalyzers. In 1857, the French chemist Louis Pasteur first described lactic acid as the product of a microbial fermentation. During this time, he worked at the University of Lille, where a local distillery asked him for advice concerning some fermentation problems. Per chance and with the badly equipped laboratory he had at that time, he was able to discover that in this distillery, two fermentations were taking place, a lactic acid one and an alcoholic one, both induced by microorganisms. He then continued the research on these discoveries in Paris, where he also published his theories that presented a stable contradiction to the purely chemical version represented by Liebig and his followers. Even though Pasteur described some concepts that are still accepted today, Liebig refused to accept them. But even Pasteur himself wrote that he was "driven" to a completely new understanding of this chemical phenomenon. Even if Pasteur didn't find every detail of this process, he still discovered the main mechanism of how the microbial lactic acid fermentation works. He was the first to describe fermentation as a "form of life without air".[4][5]
Although this chemical process had not been properly described before Pasteur's work, people had been using microbial lactic acid fermentation for food production much earlier. Chemical analysis of archeological finds show that milk fermentation uses predate the historical period; its first applications were probably a part of the Neolithic Revolution. Since milk naturally contains lactic acid bacteria, the discovery of the fermentation process was quite evident, since it happens spontaneously at an adequate temperature. The problem of these first farmers was that fresh milk is nearly indigestible by adults, so they had an interest to discover this mechanism. In fact, lactic acid bacteria contain the needed enzymes to digest lactose, and their populations multiply strongly during the fermentation. Therefore, milk fermented even a short time contains enough enzymes to digest the lactose molecules, after the milk is in the human body, which allows adults to consume it. Even safer was a longer fermentation, which was practiced for [cheesemaking]. This process was also discovered a very long time ago, which is proven by recipes for cheese production on Cuneiform scripts, the first written documents that exist, and a bit later in Babylonian and Egyptian texts.
What is interesting is the theory of the competitive advantage of fermented milk products. The idea of this theory is that the women of these first settled farmer clans could shorten the time between two children thanks to the additional lactose uptake from milk consumption. This factor may have given them an important advantage to out-compete the hunter-gatherer societies.[6]
With the increasing consumption of milk products these societies developed a lactase persistence by epigenetic inheritance, which means that the milk-digesting enzyme lactase was present in their bodies during the whole lifetime, so they could drink unfermented milk as adults too. This early habituation to lactose consumption in the first settler societies can still be observed today in regional differences of this mutation's concentration. It is estimated that about 65% of world population still lacks it.[7] Since these first societies came from regions around eastern Turkey to central Europe, the gene appears more frequently there and in North America, as it was settled by Europeans. It is because of the dominance of this mutation that Western cultures believe it is unusual to have a lactose intolerance, when it is in fact more common than the mutation. On the contrary, lactose intolerance is much more present in Asian countries.[citation needed]
Milk products and their fermentation have had an important influence on some cultures' development. This is the case in Mongolia, where people often practice a pastoral form of agriculture. The milk that they produce and consume in these cultures is mainly mare milk and has a long tradition. But not every part or product of the fresh milk has the same meaning. For instance, the fattier part on the top, the "deež", is seen as the most valuable part and is therefore often used to honor guests.
Very important with often a traditional meaning as well are fermentation products of mare milk, like for example the slightly-alcoholic yogurt kumis. Consumption of these peaks during cultural festivities such as the Mongolian lunar new year (in spring). The time of this celebration is called the "white month", which indicates that milk products (called "white food" together with starchy vegetables, in comparison to meat products, called "black food") are a central part of this tradition. The purpose of these festivities is to "close" the past year – clean the house or the yurt, honor the animals for having provided their food, and prepare everything for the coming summer season – to be ready to "open" the new year. Consuming white food in this festive context is a way to connect to the past and to a national identity, which is the Mongolian empire personified by Genghis Khan. During the time of this empire, the fermented mare milk was the drink to honor and thank warriors and leading persons, it was not meant for everybody. Although it eventually became a drink for normal people, it has kept its honorable meaning. Like many other traditions, this one feels the influence of globalization. Other products, like industrial yogurt, coming mainly from China and western countries, have tended to replace it more and more, mainly in urban areas. However, in rural and poorer regions it is still of great importance.[8]
Biochemistry
Homofermentative process
Homofermentative bacteria convert glucose to two molecules of lactate and use this reaction to perform substrate-level phosphorylation to make two molecules of ATP:
Glucose + 2 ADP + 2 Pi → 2 Lactate + 2 ATP
Heterofermentative process
Heterofermentative bacteria produce less lactate and less ATP, but produce several other end products:
Glucose + ADP + Pi → Lactate + Ethanol + CO2 + ATP
Bifidobacterium bifidum utilizes a lactic acid fermentation pathway that produces more ATP than either homolactic fermentation or heterolactic fermentation:
2 Glucose + 5 ADP + 5 Pi → 3 Acetate + 2 Lactate + 5 ATP
Some major bacterial strains identified as being able to ferment lactose are in the generaEscherichia, Citrobacter, Enterobacter and Klebsiella . All four of these groups fall underneath the family of Enterobacteriaceae. These four genera are able to be separated from each other by using biochemical testing, and simple biological tests are readily available. Apart from whole-sequence genomics, common tests include H2S production, motility and citrate use, indole, methyl red and Voges-Proskauer tests.[9]
Applications
Lactic acid fermentation is used in many areas of the world to produce foods that cannot be produced through other methods.[10][11] The most commercially important genus of lactic acid-fermenting bacteria is Lactobacillus, though other bacteria and even yeast are sometimes used.[10] Two of the most common applications of lactic acid fermentation are in the production of yogurt and sauerkraut.
In some Asian cuisines, fish is traditionally fermented with rice to produce lactic acid that preserves the fish. Examples of these dishes include burong isda of the Philippines; narezushi of Japan; and pla ra of Thailand. The same process is also used for shrimp in the Philippines in the dish known as balao-balao.[12][13][14]
Lactic acid fermentation is also used in the production of sauerkraut. The main type of bacteria used in the production of sauerkraut is of the genus Leuconostoc.[1][16]
As in yogurt, when the acidity rises due to lactic acid-fermenting organisms, many other pathogenic microorganisms are killed. The bacteria produce lactic acid, as well as simple alcohols and other hydrocarbons. These may then combine to form esters, contributing to the unique flavor of sauerkraut.[1]
The main method of producing yogurt is through the lactic acid fermentation of milk with harmless bacteria.[10][18] The primary bacteria used are typically Lactobacillus bulgaricus and Streptococcus thermophilus, and United States as well as European law requires all yogurts to contain these two cultures (though others may be added as probiotic cultures).[18] These bacteria produce lactic acid in the milk culture, decreasing its pH and causing it to congeal. The bacteria also produce compounds that give yogurt its distinctive flavor. An additional effect of the lowered pH is the incompatibility of the acidic environment with many other types of harmful bacteria.[10][18]
Lactic acid bacteria (LAB) already exists as part of the natural flora in most vegetables. Lettuce and cabbage were examined to determine the types of lactic acid bacteria that exist in the leaves. Different types of LAB will produce different types of silage fermentation, which is the fermentation of the leafy foliage.[19] Silage fermentation is an anaerobic reaction that reduces sugars to fermentation byproducts like lactic acid.
Physiological
Lactobacillus fermentation and accompanying production of acid provides a protective vaginal microbiome that protects against the proliferation of pathogenic organisms.[20]
During the 1990s, the lactic acid hypothesis was created to explain why people experienced burning or muscle cramps that occurred during and after intense exercise. The hypothesis proposes that a lack of oxygen in muscle cells results in a switch from cellular respiration to fermentation. Lactic acid created as a byproduct of fermentation of pyruvate from glycolysis accumulates in muscles causing a burning sensation and cramps.
Research from 2006 has suggested that acidosis isn't the main cause of muscle cramps. Instead cramps may be due to a lack of potassium in muscles, leading to contractions under high stress.
Animals, in fact, do not produce lactic acid during fermentation. Despite the common use of the term lactic acid in the literature, the byproduct of fermentation in animal cells is lactate.[21]
Another change to the lactic acid hypothesis is that when sodium lactate is inside of the body, there is a higher period of exhaustion in the host after a period of exercise.[22]
Lactate fermentation is important to muscle cell physiology. When muscle cells are undergoing intense activity, like sprinting, they need energy quickly. There is only enough ATP stored in muscles cells to last a few seconds of sprinting. The cells then default to fermentation, since they are in an anaerobic environment. Through lactate fermentation, muscle cells are able to regenerate NAD+ to continue glycolysis, even under strenuous activity. [5]
The vaginal environment is heavily influenced by lactic acid producing bacteria. Lactobacilli spp. that live in the vaginal canal assist in pH control. If the pH in the vagina becomes too basic, more lactic acid will be produced to lower the pH back to a more acidic level. Lactic acid producing bacteria also act as a protective barrier against possible pathogens such as bacterial vaginosis and vaginitis species, different fungi, and protozoa through the production of hydrogen peroxide, and antibacterial compounds. It is unclear if further use of lactic acid, through fermentation, in the vaginal canal is present [6]
In small amounts, lactic acid is good for the human body by providing energy and substrates while it moves through the cycle. In lactose intolerant people, the fermentation of lactose to lactic acid has been shown in small studies to help lactose intolerant people. The process of fermentation limits the amount of lactose available. With the amount of lactose lowered, there is less build up inside of the body, reducing bloating. Success of lactic fermentation was most evident in yogurt cultures. Further studies are being conducted on other milk products like acidophilus milk.[23]
^Latour B (1993). Les objets ont-ils une histoire? Rencontre de Pasteur et de Whitehead dans un bain d'acide lactique. in L'effet Whitehead, Vrin, Paris, pp.196–217. ISBN978-2-7116-1216-1.
^Benninga H (1990). A History of Lactic Acid Making: A Chapter in the History of Biotechnology, chapter 1 and 2. Springer. ISBN978-0-7923-0625-2.
^Shurtleff W, Aoyagi A (2004). A Brief History of Fermentation, East and West. In History of Soybeans and Soyfoods, 1100 B.C. to the 1980s. Ten Speed Press. ISBN1-58008-336-6.
^Brüssow H (2013). Nutrition, population growth and disease: a short history of lactose. in Environmental Microbiology Volume 15, pages 2154–2161.
^Ruhlmann S, Gardelle L (2013). Les dessus et les dessous du lait. Sociologie et politique du lait et de ses dérivés en Mongolie. in Études mongoles et sibériennes, centrasiatiques et tibétaines, n° 43–44.
^Closs O, Digranes A (1971). "Rapid identification of prompt lactose-fermenting genera within the familyh Enterobacteriaceae". Acta Pathologica et Microbiologica Scandinavica, Section B. 79 (5): 673–8. doi:10.1111/j.1699-0463.1971.tb00095.x. PMID5286215.
^Olympia MS (1992). "Fermented Fish Products in the Philippines". Applications of Biotechnology to Traditional Fermented Foods: Report of an Ad Hoc Panel of the Board on Science and Technology for International Development. National Academy Press. pp. 131–139. ISBN978-0-309-04685-5.
^Steinkraus KH (September 1983). "Lactic acid fermentation in the production of foods from vegetables, cereals and legumes". Antonie van Leeuwenhoek. 49 (3). Antonie van Leeuwenhoek Journal: 337–48. doi:10.1007/BF00399508. PMID6354083. S2CID28093220.
Israel Cárdenas dan Laura Amelia Guzmán Laura Amelia Guzmán (lahir 7 Mei 1980) dan Israel Cárdenas (lahir 15 Februari 1980) adalah tim penyutradaraan suami-istri. Kehidupan awal Guzmán lahir di Republik Dominika dari orang tua yang bekerja sebagai sutradara seni.[1] Ia awalnya bekerja sebagai sinematografer sebelum berakhir ke penyutradaraan. Cárdenas lahir dan dibesarkan di Meksiko. Kolaborasi pembuatan film Guzmán dan Cárdenas mulai menyutradarai bersama pada 2007 dengan fil...
Ada usul agar artikel ini digabungkan ke Dharmarakshita (Sumatra). (Diskusikan) Dharmakirti atau Serlingpa Dharmakirti atau yang dikenal juga dengan sebutan Suvarnadvipi Dharmakirti adalah seorang mahaguru budha dari sriwijaya yang masih termasuk dalam silsilah Dinasti syailendra Dia juga dikenal sebagai guru besar Buddhis di Sumatra pada abad ke-10. Dalam sejarahnya, Serlingpa Dharmakirti pernah menjadi guru dari Atisha, seorang yang nantinya berperan penting dalam membangun gelombang kedua ...
Kecelakaan Fokker F27 Angkatan Udara Indonesia 2009Sebuah Fokker F-27-400M Troopship dari Angkatan Laut Kerajaan Thailand, mirip dengan pesawat dalam kecelakaan tersebutRingkasan kecelakaanTanggal06 April 2009 (2009-04-06)RingkasanMenabrak hangar saat mendarat karena tersambar petir dadakanLokasiBandar Udara Internasional Husein Sastranegara, Bandung, Indonesia 6°54′15.76″S 107°34′56.94″E / 6.9043778°S 107.5824833°E / -6.9043778; 107.5824833Koordinat: ...
Bharal Status konservasi Risiko Rendah (IUCN 3.1) [1] Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Mamalia Ordo: Artiodactyla Famili: Bovidae Genus: Pseudois Spesies: P. nayaur Nama binomial Pseudois nayaurHodgson, 1833 Bharal (Pseudois nayaur) atau domba biru himalaya atau naur adalah sejenis kambing liar asli Himalaya. Mereka dapat ditemukan di lembah-lembah di India, Tibet, Nepal, Bhutan, dan Pakistan. Bharal memiliki panjang tubuh 115–165 cm ...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2019) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها...
قرية مونرويي الإحداثيات 41°19′27″N 74°11′13″W / 41.3242°N 74.1869°W / 41.3242; -74.1869 تقسيم إداري البلد الولايات المتحدة[1] التقسيم الأعلى مقاطعة أورانج خصائص جغرافية المساحة 9.111084 كيلومتر مربع9.111081 كيلومتر مربع (1 أبريل 2010) ارتفاع 600 قدم عدد السك...
Paul ScofieldScofield in 1974.LahirDavid Paul Scofield(1922-01-21)21 Januari 1922Birmingham, England, UKMeninggal19 Maret 2008(2008-03-19) (umur 86)Sussex, England, UKPekerjaanActorTahun aktif1940–2006[1]Suami/istriJoy Parker (1943-2008; kematiannya) Paul Scofield (21 Januari 1922 – 19 Maret 2008) adalah seorang aktor film dan panggung berkebangsaan Inggris yang pernah memenangi Penghargaan Academy Award dan Penghargaan BAFTA. Ia berkarier di dunia film se...
American college basketball season 2001–02 Illinois Fighting Illini men's basketballBig Ten Regular Season co-championsLas Vegas Invitational, ChampionNCAA tournament, Sweet SixteenConferenceBig Ten ConferenceRankingCoachesNo. 11APNo. 13Record26–9 (11–5 Big Ten)Head coachBill Self (2nd season)Assistant coaches Billy Gillispie Wayne McClain Norm Roberts MVPFrank WilliamsCaptainCory BradfordFrank WilliamsHome arenaAssembly HallSeasons← 2000–012002–03...
Nadezhda KrupskayaНадежда Константиновна КрупскаяLahir26 Februari [K.J.: 14 Februari] 1869St. Petersburg, Kekaisaran RusiaMeninggal27 Februari 1939(1939-02-27) (umur 70)Moskwa, RSFS Rusia, Uni Soviet Nadezhda Konstantinovna Krupskaya (bahasa Rusia: Надежда Константиновна Крупская, 26 Februari 1869 – 27 Februari 1939) adalah seorang tokoh revolusioner komunis Rusia. Pada tahun 1898, ia menikah dengan Vladimir L...
Indian actress (born 1986) Deepika PadukonePadukone at the 2018 Cannes Film FestivalBorn (1986-01-05) 5 January 1986 (age 38)Copenhagen, DenmarkNationalityIndianOccupationActressYears active2005–presentOrganisationThe Live Love Laugh FoundationWorksFull listSpouse Ranveer Singh (m. 2018)ParentPrakash Padukone (father)AwardsFull listWebsitedeepikapadukone.com Deepika Padukone (pronounced [d̪iːpɪkaː pəɖʊkoːɳeː]; born 5 January 1986) i...
Koordinat: 8°30′0″S 115°34′0″E / 8.50000°S 115.56667°E / -8.50000; 115.56667 Pantai Candi DasaPemandangan melintasi laguna ke Gili Tepekong, Gili Biaha, dan Gili Mimpang, tiga pulau tak berpenghuni yang populer di kalangan penyelam dan nelayan lokal.Pantai Candi DasaLokasi di BaliKoordinat: 8°30′0″S 115°34′0″E / 8.50000°S 115.56667°E / -8.50000; 115.56667NegaraIndonesiaProvinsiBali Pantai Candi Dasa adalah sebuah pantai d...
Gazpromavia IATA ICAO Kode panggil 4G GZP GAZPROM Didirikan1995PenghubungBandar Udara VnukovoArmada21Tujuan13 dan charterKantor pusatJSC Gazprom RussiaSitus webgazpromavia.ru Gazpromavia adalah sebuah maskapai penerbangan yang berbasis di Moskwa, Rusia. Bandar udara ini mengoperasikan penerbangan charter penumpang dan kargo, terutama menuju kota industri minyak dan gas. Maskapai ini juga mengoperasikan penerbangan domestik dari Moskow dan charter penumpang internasional dan layanan kargo. Dat...
Gangan humbut adalah makanan yang sering disajikan sebagai menu wajib jika ada hajatan/acara perkawinan/upacara kematian.[1] Gangan humbut merupakan sayur tradisional kalimantan yang memiliki cita rasa yang manis. Makanan ini juga merupakan makanan yang biasa dijual pada bulan Ramadan untuk hidangan berbuka puasa. Cara pembuatan Menggunakan bahan sayur berupa labu dan bahan utamanya batang kelapa muda yang disebut humbut. Diolah dengan ikan gabus atau lebih populer dengan sebutan ikan...
Marshall Space Flight Center (NASA) Director Gene Porter BridwellOfficial NASA portrait of Gene Porter BridwellBorn(1935-10-04)October 4, 1935Linton, Indiana, U.S.DiedAugust 4, 2016(2016-08-04) (aged 80)Huntsville, Alabama, U.S.EducationBachelor's degree in aeronautical engineering at Purdue UniversityOccupation(s)Director of theMarshall Space Flight Center Gene Porter Bridwell (October 4, 1935 – August 4, 2016) was the seventh director of the NASA Marshall Space Flight Center located ...
سفارة البرتغال في الولايات المتحدة البرتغال الولايات المتحدة الإحداثيات 38°54′35″N 77°02′51″W / 38.9098°N 77.0474°W / 38.9098; -77.0474 البلد الولايات المتحدة المكان شمال غربي واشنطن العاصمة العنوان Massachusetts Avenue (Washington, D.C.) [الإنجليزية] الاختصاص الولايات المتحدة، وجز...
For other uses, see 86th Street. New York City Subway station in Manhattan New York City Subway station in Manhattan, New York 86 Street New York City Subway station (rapid transit)The southbound platformStation statisticsAddressWest 86th Street & Central Park WestNew York, NYBoroughManhattanLocaleUpper West SideCoordinates40°47′07″N 73°58′10″W / 40.785286°N 73.969316°W / 40.785286; -73.969316DivisionB (IND)[1]Line &...
Indian-born American engineer For the politician, see Jagdish Narayan (politician). Jagdish NarayanBornKanpur, IndiaNationalityIndianOther namesJay NarayanCitizenshipUnited StatesOccupationProfessorEmployerNorth Carolina State UniversityKnown forQ-carbon, Domain matching epitaxy, Laser annealingChildren1 Jagdish Narayan[1] is an Indian-born American engineer. Since 2001, he has been the John C. C. Fan Family Distinguished Chair Professor in the Materials Science and Engineer...
2010 UK local government election Elections for Oxford City Council were held on Thursday 6 May 2010.[1] As Oxford City Council is elected by halves, one seat in each of the 24 wards was up for election. Labour gained two seats (Barton and Sandhills ward from the Liberal Democrats and Northfield Brook ward from the Independent Working Class Association), the Liberal Democrats also gained two seats (Carfax and St Clement's ward, both from the Green Party). As a result of this election,...
Football stadium in Ålesund, Norway For the hall stadium in Germany, see O2 World Hamburg. Color Line StadionLocationÅlesund, NorwayOwnerAalesunds FKOperatorAalesunds FKCapacity10,778 (Football)SurfaceArtificial turfConstructionOpened16 April 2005Construction costNOK 160 millionTenantsAalesunds FK (2005–) FK Fortuna Ålesund (2009–) Color Line Stadion is an association football stadium in Ålesund, Norway, and the home of 1. divisjon side Aalesunds FK. It was inaugurated in April 2005 a...