In 2002, the regularized version of the KP equation, naturally referred to as the Benjamin–Bona–Mahony–Kadomtsev–Petviashvili equation (or simply the BBM-KP equation), was introduced as an alternative model for small amplitude long waves in shallow water moving mainly in the x direction in 2+1 space.[7]
where . The BBM-KP equation provides an alternative to the usual KP equation, in a similar way that the Benjamin–Bona–Mahony equation is related to the classical Korteweg–de Vries equation, as the linearized dispersion relation of the BBM-KP is a good approximation to that of the KP but does not exhibit the unwanted limiting behavior as the Fourier variable dual to x approaches . The BBM-KP equation can be viewed as a weak transverse perturbation of the Benjamin–Bona–Mahony equation. As a result, the solutions of their corresponding Cauchy problems share an intriguing and complex mathematical relationship. Aguilar et al. proved that the solution of the Cauchy problem for the BBM-KP model equation converges to the solution of the Cauchy problem associated to the Benjamin–Bona–Mahony equation in the -based Sobolev space for all , provided their corresponding initial data are close in as the transverse variable .[8]
History
The KP equation was first written in 1970 by Soviet physicists Boris B. Kadomtsev (1928–1998) and Vladimir I. Petviashvili (1936–1993); it came as a natural generalization of the KdV equation (derived by Korteweg and De Vries in 1895). Whereas in the KdV equation waves are strictly one-dimensional, in the KP equation this restriction is relaxed. Still, both in the KdV and the KP equation, waves have to travel in the positive x-direction.
Connections to physics
The KP equation can be used to model water waves of long wavelength with weakly non-linear restoring forces and frequency dispersion. If surface tension is weak compared to gravitational forces, is used; if surface tension is strong, then . Because of the asymmetry in the way x- and y-terms enter the equation, the waves described by the KP equation behave differently in the direction of propagation (x-direction) and transverse (y) direction; oscillations in the y-direction tend to be smoother (be of small-deviation).
For , typical x-dependent oscillations have a wavelength of giving a singular limiting regime as . The limit is called the dispersionless limit.[10][11][12]
If we also assume that the solutions are independent of y as , then they also satisfy the inviscid Burgers' equation:
Suppose the amplitude of oscillations of a solution is asymptotically small — — in the dispersionless limit. Then the amplitude satisfies a mean-field equation of Davey–Stewartson type.
^Wazwaz, A. M. (2007). "Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh–coth method". Applied Mathematics and Computation. 190 (1): 633–640. doi:10.1016/j.amc.2007.01.056.
^Deng, S. F.; Chen, D. Y.; Zhang, D. J. (2003). "The multisoliton solutions of the KP equation with self-consistent sources". Journal of the Physical Society of Japan. 72 (9): 2184–2192. Bibcode:2003JPSJ...72.2184D. doi:10.1143/JPSJ.72.2184.
^Ablowitz, M. J.; Segur, H. (1981). Solitons and the inverse scattering transform. SIAM.
^Zakharov, V. E. (1994). "Dispersionless limit of integrable systems in 2+1 dimensions". Singular limits of dispersive waves. Boston: Springer. pp. 165–174. ISBN0-306-44628-6.
Kadomtsev, B. B.; Petviashvili, V. I. (1970). "On the stability of solitary waves in weakly dispersive media". Sov. Phys. Dokl. 15: 539–541. Bibcode:1970SPhD...15..539K.. Translation of "Об устойчивости уединенных волн в слабо диспергирующих средах". Doklady Akademii Nauk SSSR. 192: 753–756.
Kodama, Y. (2017). KP Solitons and the Grassmannians: combinatorics and geometry of two-dimensional wave patterns. Springer. ISBN978-981-10-4093-1.
Lou, S. Y.; Hu, X. B. (1997). "Infinitely many Lax pairs and symmetry constraints of the KP equation". Journal of Mathematical Physics. 38 (12): 6401–6427. Bibcode:1997JMP....38.6401L. doi:10.1063/1.532219.