The Benjamin–Bona–Mahony equation (BBM equation, also regularized long-wave equation; RLWE) is the partial differential equation
This equation was studied in Benjamin, Bona, and Mahony (1972) as an improvement of the Korteweg–de Vries equation (KdV equation) for modeling long surface gravity waves of small amplitude – propagating uni-directionally in 1+1 dimensions. They show the stability and uniqueness of solutions to the BBM equation. This contrasts with the KdV equation, which is unstable in its high wavenumber components. Further, while the KdV equation has an infinite number of integrals of motion, the BBM equation only has three.[2][3]
The BBM equation possesses solitary wave solutions of the form:[3]
where sech is the hyperbolic secant function and is a phase shift (by an initial horizontal displacement). For , the solitary waves have a positive crest elevation and travel in the positive -direction with velocity These solitary waves are not solitons, i.e. after interaction with other solitary waves, an oscillatory tail is generated and the solitary waves have changed.[1][3]
Here is the variation of the Hamiltonian with respect to and denotes the partial differential operator with respect to
Conservation laws
The BBM equation possesses exactly three independent and non-trivial conservation laws.[3] First is replaced by in the BBM equation, leading to the equivalent equation:
Similarly, for the linearized KdV equation the dispersion relation is:[2]
This becomes unbounded and negative for and the same applies to the phase velocity and group velocity Consequently, the KdV equation gives waves travelling in the negative -direction for high wavenumbers (short wavelengths). This is in contrast with its purpose as an approximation for uni-directional waves propagating in the positive -direction.[2]
The strong growth of frequency and phase speed with wavenumber posed problems in the numerical solution of the KdV equation, while the BBM equation does not have these shortcomings.[2]
Zwillinger, D. (1998), Handbook of differential equations (3rd ed.), Boston, MA: Academic Press, pp. 174 & 176, ISBN978-0-12-784396-4, MR0977062 (Warning: On p. 174 Zwillinger misstates the Benjamin–Bona–Mahony equation, confusing it with the similar KdV equation.)