IL-37c is found in the heart, and contains exons 1, 2, 5, and 6 for a total amino acid length of 197.
IL-37d is found in the bone marrow and includes exons 1, 4, 5, and 6 for a total length of 197.
IL-37e is found in the testis and includes exons 1, 5, and 6 totaling 157 amino acids.[3][6]
Function
The mechanism of IL-37 functions is still to be elucidated. Known functions of IL-37 include anti-inflammatory effects, tumor suppression, and antimicrobial responses. IL-37 acts intracellulary and extracellulary, classifying the cytokine as dual-function.[3]
IL-37 synthesis
IL-37, similar to other members of the interleukin-1 family, is synthesized by blood monocytes in a precursor form and secreted into the cytoplasm in response to inflammatory signaling. Examples of relevant inflammatory signals include TLR agonists, IL-1β, or TGF-β.[5] Full maturation requires cleavage by Caspase-1.[7]
Immune system inhibition
IL-37 is known to have immunosuppression properties through two different binding mechanisms:
Interaction with IL-18 cell surface receptors - Intracellular IL-37 can be released from cells following necrosis or apoptosis.[6] IL-37 has two similar amino acid residues with IL-18, and thus extracellular IL-37 can interact with IL-18 receptor (IL-18R) and co-receptor IL-1 receptor 8 (IL-1R8). The affinity of IL-37b to IL-18R alpha subunit is much lower compared to IL-18. IL-37b interacts with IL-18 binding protein (IL-18BP), that is an antagonist of IL-18. The binding of IL-37b enhances the IL-18BP functions and can upregulate anti-inflammatory signals.[4][7]
IL-37 functions are active at low IL-37 concentrations. Higher concentrations leads to inactivation via dimer formation.[6] Experiments also show that certain cancer strains correspond to changes in IL-37 expression levels. Breast cancer and ovarian cancer are associated with elevated expression of IL-37. Colon cancer, lung cancer, Multiple Myeloma, and Hepatoma Carcinoma were correlated with decreased expression of IL-37 expression in affected areas.[5]
Nold-Petry CA, Lo CY, Rudloff I, Elgass KD, Li S, Gantier MP, et al. (April 2015). "IL-37 requires the receptors IL-18Rα and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction". Nature Immunology. 16 (4): 354–365. doi:10.1038/ni.3103. PMID25729923. S2CID24578661.
Nicklin MJ, Weith A, Duff GW (January 1994). "A physical map of the region encompassing the human interleukin-1 alpha, interleukin-1 beta, and interleukin-1 receptor antagonist genes". Genomics. 19 (2): 382–384. doi:10.1006/geno.1994.1076. PMID8188271.
Nothwang HG, Strahm B, Denich D, Kübler M, Schwabe J, Gingrich JC, et al. (May 1997). "Molecular cloning of the interleukin-1 gene cluster: construction of an integrated YAC/PAC contig and a partial transcriptional map in the region of chromosome 2q13". Genomics. 41 (3): 370–378. doi:10.1006/geno.1997.4654. PMID9169134.
Busfield SJ, Comrack CA, Yu G, Chickering TW, Smutko JS, Zhou H, et al. (June 2000). "Identification and gene organization of three novel members of the IL-1 family on human chromosome 2". Genomics. 66 (2): 213–216. doi:10.1006/geno.2000.6184. PMID10860666.
Pan G, Risser P, Mao W, Baldwin DT, Zhong AW, Filvaroff E, et al. (January 2001). "IL-1H, an interleukin 1-related protein that binds IL-18 receptor/IL-1Rrp". Cytokine. 13 (1): 1–7. doi:10.1006/cyto.2000.0799. PMID11145836.
Debets R, Timans JC, Homey B, Zurawski S, Sana TR, Lo S, et al. (August 2001). "Two novel IL-1 family members, IL-1 delta and IL-1 epsilon, function as an antagonist and agonist of NF-kappa B activation through the orphan IL-1 receptor-related protein 2". Journal of Immunology. 167 (3): 1440–1446. doi:10.4049/jimmunol.167.3.1440. PMID11466363. S2CID85986577.
Sims JE, Nicklin MJ, Bazan JF, Barton JL, Busfield SJ, Ford JE, et al. (October 2001). "A new nomenclature for IL-1-family genes". Trends in Immunology. 22 (10): 536–537. doi:10.1016/S1471-4906(01)02040-3. PMID11574262.
Nicklin MJ, Barton JL, Nguyen M, FitzGerald MG, Duff GW, Kornman K (May 2002). "A sequence-based map of the nine genes of the human interleukin-1 cluster". Genomics. 79 (5): 718–725. doi:10.1006/geno.2002.6751. PMID11991722.
Taylor SL, Renshaw BR, Garka KE, Smith DE, Sims JE (May 2002). "Genomic organization of the interleukin-1 locus". Genomics. 79 (5): 726–733. doi:10.1006/geno.2002.6752. PMID11991723.
Kumar S, Hanning CR, Brigham-Burke MR, Rieman DJ, Lehr R, Khandekar S, et al. (April 2002). "Interleukin-1F7B (IL-1H4/IL-1F7) is processed by caspase-1 and mature IL-1F7B binds to the IL-18 receptor but does not induce IFN-gamma production". Cytokine. 18 (2): 61–71. doi:10.1006/cyto.2002.0873. PMID12096920.