Integral polytope

Cube Cuboctahedron Octahedron Truncated
octahedron
(±1, ±1, ±1) (0, ±1, ±1) (0, 0, ±1) (0, ±1, ±2)
Four integral polytopes in three dimensions

In geometry and polyhedral combinatorics, an integral polytope is a convex polytope whose vertices all have integer Cartesian coordinates.[1] That is, it is a polytope that equals the convex hull of its integer points.[2] Integral polytopes are also called lattice polytopes or Z-polytopes. The special cases of two- and three-dimensional integral polytopes may be called polygons or polyhedra instead of polytopes, respectively.

Examples

An -dimensional regular simplex can be represented as an integer polytope in , the convex hull of the integer points for which one coordinate is one and the rest are zero.[citation needed] Another important type of integral simplex, the orthoscheme, can be formed as the convex hull of integer points whose coordinates begin with some number of consecutive ones followed by zeros in all remaining coordinates. The -dimensional unit cube in has as its vertices all integer points whose coordinates are zero or one. A permutahedron has vertices whose coordinates are obtained by applying all possible permutations to the vector . An associahedron in Loday's convex realization is also an integer polytope and a deformation of the permutahedron.

In optimization

In the context of linear programming and related problems in mathematical optimization, convex polytopes are often described by a system of linear inequalities that their points must obey. When a polytope is integral, linear programming can be used to solve integer programming problems for the given system of inequalities, a problem that can otherwise be more difficult.

Some polyhedra arising from combinatorial optimization problems are automatically integral. For instance, this is true of the order polytope of any partially ordered set, a polytope defined by pairwise inequalities between coordinates corresponding to comparable elements in the set.[3] Another well-known polytope in combinatorial optimization is the matching polytope. Clearly, one seeks for finding matchings algorithmically and one technique is linear programming. The polytope described by the linear program upper bounding the sum of edges taken per vertex is integral in the case of bipartite graphs, that is, it exactly describes the matching polytope, while for general graphs it is non-integral.[4] Hence, for bipartite graphs, it suffices to solve the corresponding linear program to obtain a valid matching. For general graphs, however, there are two other characterizations of the matching polytope one of which makes use of the blossom inequality for odd subsets of vertices and hence allows to relax the integer program to a linear program while still obtaining valid matchings.[5] These characterizations are of further interest in Edmonds' famous blossom algorithm used for finding such matchings in general graphs.

Computational complexity

For a polytope described by linear inequalities, when the polytope is non-integral, one can prove its non-integrality by finding a vertex whose coordinates are not integers. Such a vertex can be described combinatorially by specifying a subset of inequalities that, when turned into a system of linear equations, have a unique solution, and verifying that this solution point obeys all of the other inequalities. Therefore, testing integrality belongs to the complexity class coNP of problems for which a negative answer can be easily proven. More specifically, it is coNP-complete.[6]

Many of the important properties of an integral polytope, including its volume and number of vertices, is encoded by its Ehrhart polynomial.[7]

Integral polytopes are prominently featured in the theory of toric varieties, where they correspond to polarized projective toric varieties. For instance, the toric variety corresponding to a simplex is a projective space. The toric variety corresponding to a unit cube is the Segre embedding of the -fold product of the projective line.[citation needed]

In algebraic geometry, an important instance of lattice polytopes called the Newton polytopes are the convex hulls of vectors representing the exponents of each variable in the terms of a polynomial. For example, the polynomial has four terms, with exponent vector (1,1), with exponent vector (2,0), with exponent vector (0,5), and with exponent vector (0,0). Its Newton polytope is the convex hull of the four points (1,1), (2,0), (0,5), and (0,0). This hull is an integral triangle with the point (1,1) interior to the triangle and the other three points as its vertices.

See also

References

  1. ^ Cornuéjols, Gérard (2001), Combinatorial Optimization: Packing and Covering, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 74, Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics (SIAM), p. 4, doi:10.1137/1.9780898717105, ISBN 0-89871-481-8, MR 1828452
  2. ^ Murota, Kazuo (2003), Discrete convex analysis, SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics (SIAM), p. 90, doi:10.1137/1.9780898718508, hdl:2433/149564, ISBN 0-89871-540-7, MR 1997998
  3. ^ Stanley, Richard P. (1986), "Two poset polytopes", Discrete & Computational Geometry, 1 (1): 9–23, doi:10.1007/BF02187680, MR 0824105
  4. ^ Lovász, László (1986). Matching theory. North-Holland. pp. 269–274. ISBN 978-0-444-87916-5. OCLC 316569965.
  5. ^ Lovász, László (1986). Matching theory. North-Holland. pp. 274–281. ISBN 978-0-444-87916-5. OCLC 316569965.
  6. ^ Ding, Guoli; Feng, Li; Zang, Wenan (2008), "The complexity of recognizing linear systems with certain integrality properties", Mathematical Programming, Series A, 114 (2): 321–334, doi:10.1007/s10107-007-0103-y, hdl:10722/58972, MR 2393045
  7. ^ Barvinok, A. I. (1994), "Computing the Ehrhart polynomial of a convex lattice polytope", Discrete & Computational Geometry, 12 (1): 35–48, doi:10.1007/BF02574364, MR 1280575

Read other articles:

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Anushka ShettyAnushka Shetty saat pemotretan untuk bukunya “The Magic Weight Loss Pill”LahirSweety Shetty 7 November 1980 Mangalore, Karnataka...

 

Marsekal Udara Carey William Adamson (5 September 1942 – 10 Mei 2019[1]) adalah seorang panglima militer Angkatan Udara Diraja Selandia Baru (RNZAF). Ia menjabat sebagai Kepala Staf Angkatan Udara dari 1995[2] hingga 1999 dan Panglima Angkatan Bersenjata Selandia Baru dari 1999 hingga 2001. Referensi ^ Carey Adamson death notice. The Press. 16 May 2019. Diakses tanggal 16 May 2019.  ^ Lee-Frampton, Nick (24–30 July 1996). Forward Thrust. Flight International. Diakses ...

 

Pokémon Chronicles Seri animeStudioOLM, Inc.PelisensiViz MediaSaluranasliTXN (TV Tokyo)Saluran bahasa InggrisAUS Cartoon NetworkCA YTVUK ToonamiUS Cartoon NetworkTayang 15 Oktober 2002 – 28 September 2004Episode22  Portal anime dan manga Pokémon Chronicles, sebagian dikenal di Jepang sebagai Pocket Monsters Side Stories (ポケットモンスターcode: ja is deprecated , Poketto Monsutā Saido Sutōrī), adalah seri spin-off dari anime asli Pokémon, yang berputar di sekitar kar...

Untuk surat kawat, lihat Telegram. Telegram Tangkapan layar Telegram berjalan di Android, tangkapan layar diambil pada tahun 2023TipePengirim pesan instan, perangkat lunak bebas, aplikasi seluler, aplikasi, situs web, perusahaan internet, aplikasi web dan komunitas daring Versi pertamaAgustus 2013 (2013-08)Versi stabilDaftarperamban web: 1.9.6 (24 September 2023)Android: 10.10.1 (1r April 2024)iOS, iPadOS: 10.10 (31 Maret 2024)macOS: 10.10.2 (3 April 2024)Linux, macOS, Microsoft Windows:...

 

كأس فنلندا 2012 تفاصيل الموسم كأس فنلندا  النسخة 58  البلد فنلندا  التاريخ بداية:6 يناير 2012  نهاية:29 سبتمبر 2012  المنظم اتحاد فنلندا لكرة القدم  البطل هونكا  عدد المشاركين 198   كأس فنلندا 2011  كأس فنلندا 2013  تعديل مصدري - تعديل   كأس فنلندا 2012 (بالفنلندية:...

 

Medali Kemenangan Perang Dunia I dengan lima penjepit medali. Penjepit medali atau Klip medali adalah penjepit logam tipis yang disematkan pada pita dekorasi militer, dekorasi sipil, atau medali lainnya. Biasanya menunjukkan penghargaan atas jasa-jasa selama kampanye atau operasi militer. Beberapa penjepit yang ada pada satu pita medali menunjukkan bahwa penerima telah memenuhi kriteria untuk menerima medali di beberapa teater pertempuran. Lihat pula Medali Piala Referensi Dorling, Henry Tapr...

Craig Edward DeForestDeForest in 2013BornAugust 13, 1968 (1968-08-13) (age 55)San Diego, California, U.S.NationalityAmericanAlma materReed College (B.A.), Stanford University (Ph.D.)OccupationAstrophysicistKnown forSolar Physicist Craig Edward DeForest (born August 13, 1968) is an American solar physicist and the Vice-Chair of the American Astronomical Society's Solar Physics Division.[1] He leads the heliophysics research group at the Boulder, Colorado offices of ...

 

Process of drawing electoral district boundaries in the United States This article is about the process of determining electoral boundaries in the United States. For the process in other countries, see Redistribution (election). This article is part of a series on thePolitics of the United States Federal government Constitution of the United States Law Taxation Policy Legislature United States Congress House of Representatives Speaker Mike Johnson (R) Majority Leader Steve Scalise (R) Minorit...

 

1984 United States Senate election in South Dakota ← 1978 November 6, 1984 1990 →   Nominee Larry Pressler George V. Cunningham Party Republican Democratic Popular vote 235,176 80,537 Percentage 74.49% 25.51% County results Pressler:      50-60%      60-70%      70-80%      80–90%      >90%Cunningham:      5...

Wikimedia Commons has media related to Museums in West Yorkshire. This list of museums in West Yorkshire, England contains museums which are defined for this context as institutions (including nonprofit organisations, government entities, and private businesses) that collect and care for objects of cultural, artistic, scientific, or historical interest and make their collections or related exhibits available for public viewing. Also included are non-profit art galleries and university art ga...

 

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

Questa voce sull'argomento cantoni della Francia è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Cantone di Neuville-de-Poitouex cantoneCanton de Neuville-de-Poitou LocalizzazioneStato Francia Regione Poitou-Charentes Dipartimento Vienne ArrondissementPoitiers AmministrazioneCapoluogoNeuville-de-Poitou Data di soppressione26 febbraio 2014 TerritorioCoordinatedel capoluogo46°41′N 0�...

 

Archaeological site in Uzbekistan Tavka KurganTavka KurganFortress of Tavka Kurgan, near Shirabad, Termez. 5th-6th century CEShown within West and Central AsiaShow map of West and Central AsiaTavka Kurgan (Uzbekistan)Show map of UzbekistanTavka Kurgan (Bactria)Show map of BactriaAlternative nameTavka KurganLocationUzbekistanCoordinates37°43′01.9″N 66°59′47.6″E / 37.717194°N 66.996556°E / 37.717194; 66.996556TypeSettlementSite notesConditionRuined Tavka...

 

State electoral district of Western Australia This article is about the Western Australian state electorate. For the Australian federal electorate, see Division of Fremantle. For the Legislative Council constituency (1870–1890), see Electoral district of Fremantle (Legislative Council). FremantleWestern Australia—Legislative AssemblyLocation of Fremantle (dark green) in the Perth metropolitan areaStateWestern AustraliaDates current1890–presentMPSimone McGurkPartyLaborNamesakeFremantleEl...

此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 ...

 

كأس نيوزيلندا 1999 تفاصيل الموسم كأس نيوزيلندا  البلد نيوزيلندا  كأس نيوزيلندا 1998  كأس نيوزيلندا 2000  تعديل مصدري - تعديل   كأس نيوزيلندا 1999 (بالإنجليزية: 1999 Chatham Cup)‏ هو موسم من كأس نيوزيلندا. فاز فيه Dunedin Technical [الإنجليزية]‏.[1] نتائج الموسم مراجع ^ report نسخة ...

 

Submarine of the United States For other ships with the same name, see USS Lapon. History United States NameUSS Lapon BuilderElectric Boat Company, Groton, Connecticut[1] Laid down21 February 1942[1] Launched27 October 1942[1] Sponsored byMrs. Jesse B. Oldendorf Commissioned23 January 1943[1] Decommissioned25 July 1946[1] Recommissioned13 April 1957[1] Decommissioned10 August 1957[1] Stricken31 December 1975[2] IdentificationSS-2...

В Википедии есть статьи о других людях с такой фамилией, см. Немирович-Данченко. Владимир Немирович-Данченко Дата рождения 11 (23) декабря 1858 Место рождения Озургети, Кутаисская губерния, Кавказское наместничество, Российская империя Дата смерти 25 апреля 1943(1943-04-25)[1][2&...

 

American javelin thrower Kate SchmidtSchmidt in 1976Personal informationBornDecember 29, 1953 (1953-12-29) (age 70)Long Beach, California, U.S.Height186 cm (6 ft 1 in)Weight80 kg (176 lb)SportSportAthleticsEventJavelin throwAchievements and titlesPersonal best69.32 m (1977)[1][2] Medal record Representing the  United States Olympic Games 1972 Munich Javelin 1976 Montreal Javelin Universiade 1975 Rome Javelin Kathryn Joan Kate Schmidt (bo...