Ideal solution

An ideal solution or ideal mixture is a solution that exhibits thermodynamic properties analogous to those of a mixture of ideal gases.[1] The enthalpy of mixing is zero[2] as is the volume change on mixing by definition; the closer to zero the enthalpy of mixing is, the more "ideal" the behavior of the solution becomes. The vapor pressures of the solvent and solute obey Raoult's law and Henry's law, respectively,[3] and the activity coefficient (which measures deviation from ideality) is equal to one for each component.[4]

The concept of an ideal solution is fundamental to both thermodynamics and chemical thermodynamics and their applications, such as the explanation of colligative properties.

Physical origin

Ideality of solutions is analogous to ideality for gases, with the important difference that intermolecular interactions in liquids are strong and cannot simply be neglected as they can for ideal gases. Instead we assume that the mean strength of the interactions are the same between all the molecules of the solution.

More formally, for a mix of molecules of A and B, then the interactions between unlike neighbors (UAB) and like neighbors UAA and UBB must be of the same average strength, i.e., 2 UAB = UAA + UBB and the longer-range interactions must be nil (or at least indistinguishable). If the molecular forces are the same between AA, AB and BB, i.e., UAB = UAA = UBB, then the solution is automatically ideal.

If the molecules are almost identical chemically, e.g., 1-butanol and 2-butanol, then the solution will be almost ideal. Since the interaction energies between A and B are almost equal, it follows that there is only a very small overall energy (enthalpy) change when the substances are mixed. The more dissimilar the nature of A and B, the more strongly the solution is expected to deviate from ideality.

Formal definition

Different related definitions of an ideal solution have been proposed. The simplest definition is that an ideal solution is a solution for which each component obeys Raoult's law for all compositions. Here is the vapor pressure of component above the solution, is its mole fraction and is the vapor pressure of the pure substance at the same temperature.[5][6][7]

This definition depends on vapor pressure, which is a directly measurable property, at least for volatile components. The thermodynamic properties may then be obtained from the chemical potential μ (which is the partial molar Gibbs energy g) of each component. If the vapor is an ideal gas,

The reference pressure may be taken as = 1 bar, or as the pressure of the mix, whichever is simpler.

On substituting the value of from Raoult's law,

This equation for the chemical potential can be used as an alternate definition for an ideal solution.

However, the vapor above the solution may not actually behave as a mixture of ideal gases. Some authors therefore define an ideal solution as one for which each component obeys the fugacity analogue of Raoult's law . Here is the fugacity of component in solution and is the fugacity of as a pure substance.[8][9] Since the fugacity is defined by the equation

this definition leads to ideal values of the chemical potential and other thermodynamic properties even when the component vapors above the solution are not ideal gases. An equivalent statement uses thermodynamic activity instead of fugacity.[10]

Thermodynamic properties

Volume

If we differentiate this last equation with respect to at constant we get:

Since we know from the Gibbs potential equation that:

with the molar volume , these last two equations put together give:

Since all this, done as a pure substance, is valid in an ideal mix just adding the subscript to all the intensive variables and changing to , with optional overbar, standing for partial molar volume:

Applying the first equation of this section to this last equation we find:

which means that the partial molar volumes in an ideal mix are independent of composition. Consequently, the total volume is the sum of the volumes of the components in their pure forms:

Enthalpy and heat capacity

Proceeding in a similar way but taking the derivative with respect to we get a similar result for molar enthalpies:

Remembering that we get:

which in turn means that and that the enthalpy of the mix is equal to the sum of its component enthalpies.

Since and , similarly

It is also easily verifiable that

Entropy of mixing

Finally since

we find that

Since the Gibbs free energy per mole of the mixture is then

At last we can calculate the molar entropy of mixing since and

Consequences

Solvent–solute interactions are the same as solute–solute and solvent–solvent interactions, on average. Consequently, the enthalpy of mixing (solution) is zero and the change in Gibbs free energy on mixing is determined solely by the entropy of mixing. Hence the molar Gibbs free energy of mixing is

or for a two-component ideal solution

where m denotes molar, i.e., change in Gibbs free energy per mole of solution, and is the mole fraction of component . Note that this free energy of mixing is always negative (since each , each or its limit for must be negative (infinite)), i.e., ideal solutions are miscible at any composition and no phase separation will occur.

The equation above can be expressed in terms of chemical potentials of the individual components

where is the change in chemical potential of on mixing. If the chemical potential of pure liquid is denoted , then the chemical potential of in an ideal solution is

Any component of an ideal solution obeys Raoult's Law over the entire composition range:

where is the equilibrium vapor pressure of pure component and is the mole fraction of component in solution.

Non-ideality

Deviations from ideality can be described by the use of Margules functions or activity coefficients. A single Margules parameter may be sufficient to describe the properties of the solution if the deviations from ideality are modest; such solutions are termed regular.

In contrast to ideal solutions, where volumes are strictly additive and mixing is always complete, the volume of a non-ideal solution is not, in general, the simple sum of the volumes of the component pure liquids and solubility is not guaranteed over the whole composition range. By measurement of densities, thermodynamic activity of components can be determined.

See also

References

  1. ^ Felder, Richard M.; Rousseau, Ronald W.; Bullard, Lisa G. (2005). Elementary Principles of Chemical Processes. Wiley. p. 293. ISBN 978-0471687573.
  2. ^ A to Z of Thermodynamics Pierre Perrot ISBN 0-19-856556-9
  3. ^ Felder, Richard M.; Rousseau, Ronald W.; Bullard, Lisa G. (15 December 2004). Elementary Principles of Chemical Processes. Wiley. p. 293. ISBN 978-0471687573.
  4. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "ideal mixture". doi:10.1351/goldbook.I02938
  5. ^ P. Atkins and J. de Paula, Atkins’ Physical Chemistry (8th edn, W.H.Freeman 2006), p.144
  6. ^ T. Engel and P. Reid Physical Chemistry (Pearson 2006), p.194
  7. ^ K.J. Laidler and J.H. Meiser Physical Chemistry (Benjamin-Cummings 1982), p. 180
  8. ^ R.S. Berry, S.A. Rice and J. Ross, Physical Chemistry (Wiley 1980) p.750
  9. ^ I.M. Klotz, Chemical Thermodynamics (Benjamin 1964) p.322
  10. ^ P.A. Rock, Chemical Thermodynamics: Principles and Applications (Macmillan 1969), p.261

Read other articles:

Dorothy Johnson Vaughan Dorothy Johnson Vaughan (Kansas City, 20 settembre 1910 – Hampton, 10 novembre 2008) è stata una matematica e programmatrice statunitense afro-americana che ha lavorato per il National Advisory Committee for Aeronautics (NACA) e successivamente per la NASA, al Langley Research Center a Hampton, in Virginia. Prima di entrare al Langley Research Center della NACA nel 1943, Vaughan fu professoressa di matematica alla R. R. Moton High School di Farmville, in Virginia.&#...

 

Keuskupan Agung GuiyangArchidioecesis Coeiiamensis天主教贵阳总教区LokasiNegara ChinaProvinsi gerejawiGuiyangStatistikLuas100.000 km2 (39.000 sq mi)Populasi- Total- Katolik(per 1950)7.000.00024,713 (0.4%)InformasiRitusRitus LatinKatedralKatedral Santo Yusuf di GuiyangKepemimpinan kiniPausFransiskusUskup agungPaul Xiao Zejiang Keuskupan Agung Guiyang/Kweyang (Latin: Coeiiamen(sis)code: la is deprecated , Hanzi sederhana: 贵阳; Hanzi tradisio...

 

Nabhaniالنباهنة1154–1624Ibu kotaBahlaBahasa resmiArabAgama Islam IbadiPemerintahanMonarkiMalik (raja) • 1152–1176 Muhammed al-Fallah (pertama)• hingga 1624 Sulaiman bin Sulaiman (terakhir) Sejarah • Didirikan 1154• Dibubarkan 1624 Didahului oleh Digantikan oleh ksrKekaisaran Seljuk Yarubi Sekarang bagian dari Oman Uni Emirat Arab Sunting kotak info • Lihat • BicaraBantuan penggunaan templat ini Wangas Nabhani (Arab: أسرة بن...

فغر المعدة بالمنظار عبر الجلد فغر المعدة بالمنظار عبر الجلد. معلومات عامة من أنواع فغر المعدة  تعديل مصدري - تعديل   فغر المعدة بالمنظار عبر الجلد (بالإنجليزية: Percutaneous endoscopic gastrostomy)‏ هو إجراء طبي تنظيري يتم فيه تمرير أنبوب (أنبوب فغر المعدة بالمنظار عبر الجلد) إلى معدة �...

 

The BreadwinnerTeaser posterSutradaraNora TwomeyProduser Angelina Jolie Jordan Peele Anthony Leo Tomm Moore Andrew Rosen Paul Young Mimi Polk Gitlin Ditulis oleh Anita Doron Deborah Ellis BerdasarkanThe Breadwinneroleh Deborah EllisPemeran Saara Chaudry Soma Bhatia Noorin Gulamgaus Laara Sadiq Ali Badshah Shaista Latif Kawa Ada Ali Kazmi Perusahaanproduksi Cartoon Saloon Aircraft Pictures[1] Guru Studio[2] Jolie Pas[3] Irish Film Board[4] Melusine Productions T...

 

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Alkalosis respiratorikDavenport diagramInformasi umumSpesialisasiPulmonologi, Kedokteran perawatan intensif, Penyakit dalam  Alkalosis respir...

For the current administrative region of Lublin, see Lublin Voivodeship. This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (February 2020) (Learn how and when to remove this message) Lublin District (German: Distrikt Lublin) was one of the first four Nazi districts of the General Governorate region of German-occupied Poland dur...

 

МифологияРитуально-мифологическийкомплекс Система ценностей Сакральное Миф Мономиф Теория основного мифа Ритуал Обряд Праздник Жречество Мифологическое сознание Магическое мышление Низшая мифология Модель мира Цикличность Сотворение мира Мировое яйцо Мифическое �...

 

Peta letak Yichang Yichang (Hanzi: 宜昌) merupakan nama kota yang terletak di provinsi Hubei di RRT. Geografi Yichang memiliki luas wilayah 21.084 km². Kota ini terletak di Provinsi Hubei dan bagian timur Jurang Xiling (西陵峡). Kota ini bermuara di Sungai Panjang. Temperatur udara rata-rata di kota ini ialah 16-18 °C. Demografi Kota ini memiliki jumlah penduduk sekitar 3,9 juta. Di daerah kota dihuni 600.000 orang. Kota ini didirikan pada tahun 278. Artikel bertopik geografi...

Laws of Ukraine regarding language Language policy in Ukraine is based on its Constitution, international treaties and on domestic legislation. According to article 10 of the Constitution, Ukrainian is the official language of Ukraine, and the state shall ensure the comprehensive development and functioning of the Ukrainian language in all spheres of social life throughout the entire territory of the country. Some minority languages (such as Russian and Belarusian) have significantly less pro...

 

Lukisan karya Jan Matejko Untuk penguasa lain yang bernama sama, lihat Ladislaus I. Władysław I Łokietek (yang Pendek) dari Polandia (1260/1261-2 Maret 1333) adalah Raja Polandia yang berkuasa di antara tahun 1320–1333. Ia adalah putra Kazimierz I Kujawski. Setelah ayahandanya meninggal dunia, Władysław mewarisi Kujawy. Menyusul meninggalnya kedua saudaranya, semua warisan jatuh ke tangan Władysław, yang mulai menyatukan kembali Kerajaan Polandia. Pada tahun 1318, Władysław memulai...

 

Ongoing COVID-19 viral pandemic in Liechtenstein This article needs to be updated. Please help update this article to reflect recent events or newly available information. (December 2020) You can help expand this article with text translated from the corresponding article in German. (February 2021) Click [show] for important translation instructions. View a machine-translated version of the German article. Machine translation, like DeepL or Google Translate, is a useful starting point fo...

1940s British turbojet aircraft engine For the 1928 piston engine, see de Havilland Ghost (V8). Ghost A Swedish licensed-built de Havilland Ghost, the RM 2 Type Turbojet Manufacturer de Havilland Engine Company First run 2 September 1945 Major applications de Havilland Comet de Havilland Venom de Havilland Sea Venom Developed from de Havilland Goblin The de Havilland Ghost (originally Halford H-2) was the de Havilland Engine Company's second design of a turbojet engine to enter production and...

 

Esoteric Buddhism found in Maritime Southeast Asia Part of a series onVajrayana Buddhism TraditionsHistorical traditions: Ari-Acharya Burmese-Bengal † Yunnan Indonesian Esoteric Buddhism † Filipino Esoteric Buddhism † East Asian Chinese Japanese Nepalese Inner Asian Tibetan Altaic (o, x, b, t, k, y) New branches: Gateway of the Hidden Flower New Kadampa Buddhism Shambhala Buddhism True Awakening Tradition History Tantrism Mahasiddha Sahaja Pursuit Buddhahood Bodhisattva Kalachakra Pract...

 

Cet article est une ébauche concernant la science-fiction. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Space Western Comics, bande dessinée mélangeant western et science fiction (1952). Le space western est un sous-genre de la science-fiction qui combine des éléments issus du western à ceux caractérisant le genre SF. Cela peut aller d'une simple influence du western sur le genre en question, comme la ...

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada. Busca fuentes: «Moderación» – noticias · libros · académico · imágenesEste aviso fue puesto el 13 de abril de 2012. La moderación es evitar llegar a un punto muerto o a los extremos, en busca de equilibrio. La moderación como virtud es entendida como una virtud, la moderación es equivalente a la mesura y la prudencia. La moderación es el evitar llegar a un punto muert...

 

سيليكا نباتية من شجرة Paulownia fargesii. سيليكا النبات [1] (يقابلها باللغة الإنجليزية كلمة Phytolith، وهي مشتقة من الإغريقية بمعنى «صخر النبات».) هي بنى مجهرية (مكروئية) صلبة مؤلفة من السيليكا والموجودة في أنسجة بعض النباتات، وهي لا تتفكك مع تحلل النباتات. تتشكل هذه السيليكا النباتي...

 

Economic concept The marginal efficiency of capital (MEC) is that rate of discount which would equate the price of a fixed capital asset with its present discounted value of expected income. The term “marginal efficiency of capital” was introduced by John Maynard Keynes in his General Theory, and defined as “the rate of discount which would make the present value of the series of annuities given by the returns expected from the capital asset during its life just equal its supply price�...

ما تشونغ-يينغ (بالصينية التقليدية: 馬仲英)‏  ما تشونغ يينغ معلومات شخصية الميلاد سنة 1910   مقاطعة لينشيا، إقليم قانسو الوفاة سنة 1936 (25–26 سنة)  مواطنة سلالة تشينغ الحاكمة جمهورية الصين  اللقب غا سو-لينغ (الجنرال الطفل أو القائد الصغير)[1] أو الحصان الكبير[2] ا...

 

Disambiguazione – Se stai cercando altri significati, vedi Sannio (disambigua). SannioSannio - LocalizzazioneL'antico Samnium secondo l'Historical Atlas di William R. Shepherd (1911) Dati amministrativiNome completo(LA) Samnium; Samnitium ager[1] Nome ufficialeSafinim[2] Lingue parlateosco, in seguito latino PoliticaNascitaVI secolo a.C. Causainsediamento dell'area da parte dei Sanniti FineI secolo a.C. Causaromanizzazione dell'area ed istituzione delle XI regiones augu...