Hilbert's twenty-first problem

The twenty-first problem of the 23 Hilbert problems, from the celebrated list put forth in 1900 by David Hilbert, concerns the existence of a certain class of linear differential equations with specified singular points and monodromic group.

Statement

The original problem was stated as follows (English translation from 1902):

Proof of the existence of linear differential equations having a prescribed monodromic group
In the theory of linear differential equations with one independent variable z, I wish to indicate an important problem one which very likely Riemann himself may have had in mind. This problem is as follows: To show that there always exists a linear differential equation of the Fuchsian class, with given singular points and monodromic group. The problem requires the production of n functions of the variable z, regular throughout the complex z-plane except at the given singular points; at these points the functions may become infinite of only finite order, and when z describes circuits about these points the functions shall undergo the prescribed linear substitutions. The existence of such differential equations has been shown to be probable by counting the constants, but the rigorous proof has been obtained up to this time only in the particular case where the fundamental equations of the given substitutions have roots all of absolute magnitude unity. L. Schlesinger (1895) has given this proof, based upon Poincaré's theory of the Fuchsian zeta-functions. The theory of linear differential equations would evidently have a more finished appearance if the problem here sketched could be disposed of by some perfectly general method. [1]

Definitions

In fact it is more appropriate to speak not about differential equations but about linear systems of differential equations: in order to realise any monodromy by a differential equation one has to admit, in general, the presence of additional apparent singularities, i.e. singularities with trivial local monodromy. In more modern language, the (systems of) differential equations in question are those defined in the complex plane, less a few points, and with a regular singularity at those. A more strict version of the problem requires these singularities to be Fuchsian, i.e. poles of first order (logarithmic poles), including at infinity. A monodromy group is prescribed, by means of a finite-dimensional complex representation of the fundamental group of the complement in the Riemann sphere of those points, plus the point at infinity, up to equivalence. The fundamental group is actually a free group, on 'circuits' going once round each missing point, starting and ending at a given base point. The question is whether the mapping from these Fuchsian equations to classes of representations is surjective.

History

This problem is more commonly called the Riemann–Hilbert problem. It led to several bijective correspondences known as 'Riemann–Hilbert correspondences', for flat algebraic connections with regular singularities and more generally regular holonomic D-modules or flat algebraic connections with regular singularities on principal G-bundles, in all dimensions. The history of proofs involving a single complex variable is complicated. Josip Plemelj published a solution in 1908. This work was for a long time accepted as a definitive solution; there was work of G. D. Birkhoff in 1913 also. Plemelj (1964) wrote a monograph summing up his work. A few years later the Soviet mathematician Yuliy S. Il'yashenko and others started raising doubts about Plemelj's work. In fact, Plemelj correctly proves that any monodromy group can be realised by a regular linear system which is Fuchsian at all but one of the singular points. Plemelj's claim that the system can be made Fuchsian at the last point as well is wrong, unless the monodromy is diagonalizable there.[1]

Indeed Andrey A. Bolibrukh (1990) found a counterexample to Plemelj's statement. This is commonly viewed as providing a counterexample to the precise question Hilbert had in mind; Bolibrukh showed that for a given pole configuration certain monodromy groups can be realised by regular, but not by Fuchsian systems. (In 1990 he published the thorough study of the case of regular systems of size 3 exhibiting all situations when such counterexamples exists. In 1978 Dekkers had shown that for systems of size 2 Plemelj's claim is true. Andrey A. Bolibrukh (1992) and independently Vladimir Kostov (1992) showed that for any size, an irreducible monodromy group can be realised by a Fuchsian system. The codimension of the variety of monodromy groups of regular systems of size with poles which cannot be realised by Fuchsian systems equals (Vladimir Kostov (1992)).) Parallel to this the Grothendieck school of algebraic geometry had become interested in questions of 'integrable connections on algebraic varieties', generalising the theory of linear differential equations on Riemann surfaces. Pierre Deligne proved a precise Riemann–Hilbert correspondence in this general context (a major point being to say what 'Fuchsian' means). With work by Helmut Röhrl, the case in one complex dimension was again covered.

See also

References

  1. ^ Treibich Kohn, Armando., "Un résultat de Plemelj.", Mathematics and Physics (Paris, 1979/1982): 307–312, Progr. Math., 37, Birkhäuser Boston, Boston, MA, 1983, MR 0728426
  • Anosov, D. V.; Bolibruch, A. A. (1994), The Riemann-Hilbert problem, Aspects of Mathematics, E22, Braunschweig: Friedr. Vieweg & Sohn, doi:10.1007/978-3-322-92909-9, ISBN 978-3-528-06496-9, MR 1276272
  • Bolibrukh, A. A. (1990), "The Riemann-Hilbert problem", Akademiya Nauk SSSR I Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk (in Russian), 45 (2): 3–47, Bibcode:1990RuMaS..45Q...1B, doi:10.1070/RM1990v045n02ABEH002350, ISSN 0042-1316, MR 1069347, S2CID 250853546
  • Deligne, Pierre (1970). Équations différentielles à points singuliers réguliers. (French) Lecture Notes in Mathematics, Vol. 163. Springer-Verlag, Berlin-New York, 1970. 133 pp. MR0417174
  • Plemelj, Josip (1964), Radok., J. R. M. (ed.), Problems in the sense of Riemann and Klein, Interscience Tracts in Pure and Applied Mathematics, vol. 16, New York-London-Sydney: Interscience Publishers John Wiley & Sons Inc., ISBN 9780470691250, MR 0174815
  • Bolibrukh, A.A. (1992), "Sufficient conditions for the positive solvability of the Riemann-Hilbert problem", Matematicheskie Zametki (in Russian), 51 (2): 110–117, doi:10.1007/BF02102113, MR 1165460, S2CID 121743184
  • Gérard, Raymond (1969). Le problème de Riemann-Hilbert sur une variété analytique complexe. (French) Ann. Inst. Fourier (Grenoble) 19 (1969), fasc. 2, 1--32. MR0281946
  • Kostov, Vladimir Petrov (1992), "Fuchsian linear systems on and the Riemann-Hilbert problem", Comptes Rendus de l'Académie des Sciences, Série I, 315 (2): 143–148, MR 1197226
  • Röhrl, Helmut (1957). Das Riemann-Hilbertsche Problem der Theorie der linearen Differentialgleichungen. (German) Math. Ann. 133, 1--25. MR0086958
  • Schlesinger, L. (1895), Handbuch der Theorie der linearen Differentialgleichungen vol. 2, part 2, No. 366
  • Treibich Kohn, Armando. (1983), "Un résultat de Plemelj.", Mathematics and Physics (Paris, 1979/1982): 307–312, Progr. Math., 37, Birkhäuser Boston, Boston, MA, 1983, MR 0728426
  • Katz, N.M. (1976), "An Overview of Deligne's work on Hilbert's Twenty-First Problem", Proceedings of Symposia in Pure Mathematics, 28: 537–557, doi:10.1090/pspum/028.2/9904, ISBN 9780821814284

Read other articles:

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Hari persiapan – berita · surat kabar · buku · cendekiawan · JSTOR Hari persiapan dalam agama Yahudi merupakan hari sebelum hari Sabat, yaitu hari Jumat, orang-orang Yahudi pada hari itu mempersiapkan di...

Wikipedia list articleقالب:SHORTDESC:Wikipedia list article خريطة البعثات الدبلوماسية في بوروندي هذه قائمة البعثات الدبلوماسية في بوروندي. في الوقت الحاضر، تستضيف العاصمة السابقة بوجومبورا 20 سفارة. السفارات  بلجيكا  الصين  جمهورية الكونغو الديمقراطية  مصر  فرنسا  ألمانيا  الكرس...

Se ha sugerido que esta página sea renombrada como «Judiones de La Granja». Motivo: aún no se han proporcionado motivos para el renombrado. Detalle del judión de La Granja Judiones de La Granja cocidos Judiones de la Granja en Real Sitio de San Ildefonso Se denomina judiones de La Granja a una variedad de judía de gran tamaño que se cultiva en el Real Sitio de San Ildefonso (provincia de Segovia, Castilla y León, España), la Phaseolus coccineus, también denominada Phaseolus multiflo...

Опис файлу Обґрунтування добропорядного використання для статті «Сваровскі-Тіроль» [?] Опис Логотип ФК «Сваровскі-Тіроль» для використання у статті Сваровскі-Тіроль Джерело gmkfreelogos.com Мета використання в якості основного засобу візуальної ідентифікації у верхні...

City of Kalamunda Local Government Area van Australië Locatie van City of Kalamunda in Perth Situering Staat West-Australië Hoofdplaats Kalamunda Coördinaten 31°58'26ZB, 116°3'29OL Algemene informatie Oppervlakte 324,2 km² Inwoners 58.762(2021)[1] Overig Wards 5 Website (en) City of Kalamunda Portaal    Australië City of Kalamunda is een Local Government Area (LGA) in Australië in de staat West-Australië in de agglomeratie van Perth. De hoofdplaats is Kalamunda. Tot...

Tim bisbol nasional JepangInformasiNegara JapanFederasiBaseball Federation of JapanKonfederasiBaseball Federation of AsiaManajerAtsunori Inaba SeragamWorld Baseball ClassicPenampilan4 (Pertama pada 2006)Hasil terbaik Ke-1 (2 kali, terakhir pada 2009)OlimpiadePenampilan6 (Pertama pada 1992)Hasil terbaik Ke-1 (1 kali, pada 2020)WBSC Premier12Penampilan2 (Pertama pada 2015)Hasil terbaik Ke-1 (1 kali, pada 2019)Piala DuniaPenampilan15 (Pertama pada 1972)Hasil terbaik Ke-2 (1 kali, pada 1982)...

  لمعانٍ أخرى، طالع مستشفى الملك فهد (توضيح). مستشفى الملك فهد التخصصي بالدمام مستشفى الملك فهد التخصصي إحداثيات 26°24′43″N 50°06′10″E / 26.41208°N 50.10288°E / 26.41208; 50.10288  معلومات عامة نوع المبنى تخصصي الموقع المنطقة الشرقية القرية أو المدينة الدمام الدولة المملكة ال

The Making of Modern Turkey: Nation and State in Eastern Anatolia, 1913–1950 PengarangUğur Ümit ÜngörPenerbitOxford University PressTanggal terbit2011ISBNISBN 978-0-199-60360-2 The Making of Modern Turkey: Nation and State in Eastern Anatolia, 1913–1950 adalah sebuah buku karya Uğur Ümit Üngör, yang diterbitkan oleh Oxford University Press pada tahun 2011.[1] Buku tersebut menyoroti politik populasi dalam transisi antara akhir Kesultanan Utsmaniyah dan Republik Turki,...

1782 killing of Christian Lenape by American soldiers during the Revolutionary War Gnadenhutten massacrePart of the American Revolutionary WarAn 1852 woodcut depicting the massacreLocationGnadenhutten, Ohio CountryDateMarch 8, 1782Attack typeMass killingDeaths96 killedPerpetratorsPennsylvania Militia vteWestern theater Island Flats 1st Fort Henry Boonesborough Illinois Vincennes Fort Pitt Fort Laurens Chillicothe St. Louis Bird's invasion Piqua La Balme's Defeat Fort St. Joseph Coshocton Loch...

For other ships with the same name, see USS San Marcos. USS San Marcos (front) with USS Donner History United States NameSan Marcos NamesakeCastillo de San Marcos in Florida Laid down1 September 1944 Launched10 January 1945 Commissioned15 April 1945 Decommissioned1 July 1971 IdentificationLSD-25 FateTransferred to Spain, 1 July 1971 Stricken1 August 1974 Spain NameGalicia Acquired1 July 1971 Commissioned1 July 1971 IdentificationTA31, L31 Stricken1988 FateScrapped in 1989 General charact...

Genus of plants Argyroxiphium Haleakalā silversword Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Asterids Order: Asterales Family: Asteraceae Subfamily: Asteroideae Tribe: Madieae Subtribe: Madiinae Genus: ArgyroxiphiumDC. Synonyms[1] Argyrophyton Hook. Argyroxiphium is a small genus of plants in the family Asteraceae.[2][3] Its members are known by the common names silversword or greensword due to their lon...

Organosulfur compound (S=C(NH2)2) See also: Thioureas Thiourea Names Preferred IUPAC name Thiourea[1] Other names Thiocarbamide Identifiers CAS Number 62-56-6 Y 3D model (JSmol) Interactive image Beilstein Reference 605327 ChEBI CHEBI:36946 Y ChEMBL ChEMBL260876 Y ChemSpider 2005981 Y ECHA InfoCard 100.000.494 Gmelin Reference 1604 KEGG C14415 Y PubChem CID 2723790 RTECS number YU2800000 UNII GYV9AM2QAG Y UN number 2811 CompTox Dashboard (EPA) DTXSID90213...

2015 single by Avicii Waiting for LoveSingle by Aviciifrom the album Stories Released22 May 2015Genre Progressive house[1] Length3:48Label PRMD Universal Songwriter(s) Salem Al Fakir Simon Aldred Tim Bergling Martijn Garritsen Vincent Pontare Producer(s) Avicii Martin Garrix Avicii singles chronology The Nights (2015) Waiting for Love (2015) For a Better Day (2015) Music videoWaiting for Love on YouTubeWaiting for Love (Lyric Video) on YouTubeWaiting for Love (360° Video) on YouT...

United States historic placeShepard BlockU.S. National Register of Historic Places Shepard Block at the corner of Essex and Summer StreetsShow map of MassachusettsShow map of the United StatesLocationSalem, MassachusettsCoordinates42°31′17.7″N 70°53′54.3″W / 42.521583°N 70.898417°W / 42.521583; -70.898417Built1851Architectural styleGreek RevivalMPSDowntown Salem MRANRHP reference No.83000584 [1]Added to NRHPJuly 29, 1983 The Shepard B...

Reuse of sound recording in another recording DJ Premier selecting records to sample In sound and music, sampling is the reuse of a portion (or sample) of a sound recording in another recording. Samples may comprise elements such as rhythm, melody, speech, sound effects or longer portions of music, and may be layered, equalized, sped up or slowed down, repitched, looped, or otherwise manipulated. They are usually integrated using electronic music instruments (samplers) or software such as dig...

Tunga penetrans Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Siphonaptera Famili: Hectopsyllidae Genus: Tunga Spesies: T. penetrans Nama binomial Tunga penetrans(Linnaeus, 1758) Tunga penetrans adalah sejenis kutu yang lazim ditemui di tempat beriklim tropis dan subtropis. Kutu ini memang sangat kecil bahkan sulit dibedakan dengan butiran pasir. Mereka bersembunyi dalam pasir dan tanah menunggu kaki manusia menginjak. Karena hewan ini bersifat parasit, me...

American film producer This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: John Goldwyn – news · newspapers · books · scholar · JSTOR (August 2017) (Learn how and when to remove this message) John G...

Paghimo ni bot Lsjbot. Ningbingia bulla Hulga sa Pagkapuo Puydeng mapuo  (IUCN 3.1)[1] Siyentipikinhong Pagklasipikar Kaginharian: Animalia Ka-ulo: Mollusca Kahutong: Gastropoda Kahanay: Stylommatophora Kapunoang-banay: Helicoidea Kabanay: Camaenidae Kahenera: Ningbingia Espesye: Ningbingia bulla Siyentipikinhong Ngalan Ningbingia bullaSolem, 1981 Kaliwatan sa dawhilahila ang Ningbingia bulla[2]. Una ning gihulagway ni Alan Solem ni adtong 1981.[3] Ang Ningbingia ...

Kalender Tzolkin (Tzolk'in) adalah salah satu jenis kalender ciptaan Suku Maya yang cukup terkenal. Satu siklus dalam perhitungan kalender ini memiliki lama waktu 260 hari.[1] yang terbagi dalam 13 trecena dan lama waktu setiap trecena adalah 20 hari.[2] Meskipun tidak ada kepastian kapan awal hari dari 20 penanggalan tersebut, tetapi pada buku Chilam Balam diperoleh referensi bahwa hari pertama adalah Imix.[3] Nama-nama hari pada Kalender Tzolkin Tabel dibawah ini men...

Paghimo ni bot Lsjbot. 35°41′44″N 83°00′35″W / 35.69566°N 83.00959°W / 35.69566; -83.00959 Billy Top Bukid Nasod  Tinipong Bansa Estado North Carolina Kondado Haywood County Gitas-on 1,122 m (3,681 ft) Tiganos 35°41′44″N 83°00′35″W / 35.69566°N 83.00959°W / 35.69566; -83.00959 Timezone EST (UTC-5)  - summer (DST) EDT (UTC-4) GeoNames 4455991 Bukid ang Billy Top sa Tinipong Bansa.[1] Ang Bill...