There are many heme degrading enzymes in nature. In general, only aerobic heme degrading enzymes are referred to as HMOX-like enzymes whereas anaerobic enzymes are typically not affiliated with the HMOX family.
Heme oxygenase
Heme oxygenase (alternatively spelled using haem or oxidase) catalyzes the degradation of heme to biliverdin/bilirubin, ferrous ion, and carbon monoxide. The human genome may encode three isoforms of HMOX.
The degradation of heme forms three distinct chromogens as seen in healing cycle of a bruise. This reaction can occur in virtually every cell and platelet; the classic example is the healing process of a contusion, which forms different chromogens as it gradually heals: (red) heme to (green) biliverdin to (yellow) bilirubin which is widely known for jaundice.[2] In general, aside from sharing the functionality of catabolizing heme, all HMOX isoforms share are signature 24-residue sequence considered to be essential for the enzymatic activity.[3]
Though present throughout the body, HMOX is most active in the spleen facilitating degradation of hemoglobin during erythrocyte recycling (approximately 0.8% of the erythrocyte pool per day).[4]
HO-1 is a stress-induced isoform present throughout the body[7] with highest concentrations in the spleen, liver, and kidneys, and on the cellular level is primarily located in the endoplasmic reticulum, although it has also been reported in the mitochondria, cell nucleus, and plasma membrane.[8] Soluble variations of HO-1 have been described. HO-1 may also serve as a chaperone protein, engage in protein-protein interactions, be secreted into the extracellular space, and participate in other cellular functions beyond its catalytic activity.[9] HO-1 may also generate small amounts of carbon suboxide.[10] HO-1 enzymes are degraded via ubiquitination.
The enzyme has been the subject of extensive investigation into its regulatory signaling, immunomodulatory, and cryoprotective roles.[11] HMOX1 is an essential enzyme. Human HMOX1-deficiency is rare, however several cases have been reported which generally results in death.[12]
In certain diseases, HMOX is problematic.[13][14] For example, HMOX1 may counteract certain chemotherapeutic drugs to rescue cancer cells from cytotoxic drugs thereby enabling cancer progression.[15] HMOX1 inhibitors are in development.[16]
Heme oxygenase 2
Heme oxygenase 2 (HMOX2 or HO-2) is a constitutive isoform that is expressed under homeostatic conditions in the testes, gastrointestinal tract, endothelial cells and the brain.[17] HO-2 is encoded by the HMOX2 gene. HO-2 is 36 kDa and shares 47% similarity with the HO-1 amino acid sequence; notably HO-2 has an extra N-terminal stretch of 20 amino acid residues.[5] Unlike HO-1, HO-2 is a hemoprotein containing heme regulatory motifs that contain heme independent of the heme catabolic site.[3]
Whereas HO-1 has innumerable inducers, only adrenal glucocorticoids are known to induce HO-2[12] whereas certain other molecules may increase its catalytic velocity.[9]Opioids may inhibit HMOX2 activity.[9] Many drugs that activate and inhibit HO-2 are in development.[18]
Heme oxygenase 3
A controversial third heme oxygenase (HO-3) is considered to be catalytically inactive and has been speculated to work in heme sensing or detoxification. HO-3 is 33 kDa with greatest presence in the liver, prostate, and kidneys. However, attempts to isolate HO-3 yielded pseudogenes derived from HO-2 transcripts thereby raising questions about the existence of a third isoform.[9]
Microbial heme oxygenase
Heme oxygenase is conserved across phylogenetic kingdoms.[19] The human microbiome contains dozens of unique microbial HMOX homologues which use many different abbreviations exemplified by:[9]
A critical role of the prokaryotic HMOX systems is to facilitate acquisition of nutritional iron from a eukaryotic host.[20]
Some heme-degrading prokaryotic enzymes produce products such as formaldehyde rather than CO. As an example, certain pathogens such as Escherichia coliO157:H7 can express the non-CO producing ChuW isoform. Many pathogens are susceptible to CO toxicity, therefore expressing non-CO producing heme degradation enzymes evades self-inflicted toxicity while meeting nutritional iron needs. Commensal microbiota generally have CO tolerance as they produce and respond to CO signals; upon excretion from the microbe, the CO either directly benefits the host or applies selection pressure against pathogens thereby serving as a symbiotic currency.[9]
Plant heme oxygenase
Plants contain HMOX homologues with critical roles in plant physiology.[21] Although chlorophyll is structurally similar to heme, it is unclear if any HMOX-like enzymes are capable of facilitating metabolism.[9]
Quasi-enzymatic heme oxidation
As heme oxygenase is an enzymatic catalyst that accelerates the slow natural oxidation of heme, non-enzymatic oxidative degradation of heme, commonly termed 'coupled oxidation', was proposed as early as 1949. Akin to HMOX, coupled oxidation occurs at the alpha-methine bridge and leads to formation of biliverdin although the reaction's stoichiometry is different.[22] The first attempt to describe HMOX in 1962 by Nakajima turned out to be a non-enzymatic pathway. The complexity of the non-enzymatic pathway has been coined quasi-enzymatic or pseudoenzymatic.[22] A variety of mechanisms have been proposed.[22][23]
Reaction
HMOX1 is the rate-limiting step of heme catabolism that is dependent on NADPH-cytochrome P450 reductase and oxygen to cleave heme/porphyrin ring at the alpha-methene bridge to form biliverdin (or verdoglobin if the heme is still intact as hemoglobin). The reaction comprises three steps, which may be:[24]
Heme b3+ + O 2 + NADPH + H+ → α-meso-hydroxyheme3+ + NADP+ + H 2O
α-meso-hydroxyheme3+ + H+ + O 2 → verdoheme4+ + CO + H 2O
verdoheme4+ + 7/2 NADPH + O 2+ 3/2 H+ → biliverdin + Fe2+ + 7/2 NADP+ + H 2O
This reaction can occur in virtually every cell; the classic example is the formation of a contusion, which forms different chromogens as it gradually heals: (red) heme to (green) biliverdin to (yellow) bilirubin. In terms of molecular mechanisms, the enzyme facilitates the intramolecular hydroxylation of one meso carbon centre in the heme.[25]
HMOX is involved in numerous cellular operations.[30][31] The cyto-protective benefits of HMOX has stimulated significant research into its therapeutic and pharmaceutical potential.[32] These effects have not been verified in clinical trials.[33][8]
HMOX is the main source of endogenous CO production,[33] though other minor contributors have been identified in recent years. CO is formed at a rate of 16.4 μmol/hour in the human body, ~86% originating from heme via heme oxygenase and ~14% from non-heme sources including: photooxidation, lipid and keto acid peroxidation, microbiome, and xenobiotics.[9] The average carboxyhemoglobin (CO-Hb) level in a non-smoker is between 0.2% and 0.85% CO-Hb (whereas a smoker may have between 4% and 10% CO-Hb), though genetics, geographic location, occupation, health and behavior are contributing variables.
In addition to being a source of carbon monoxide, heme is a critical signal transducer involved in carbon monoxide sensing.[34][35] As a signaling agent, carbon monoxide is involved in normal physiology and has therapeutic benefits in many indications such as ameliorating inflammation and hypoxia.[33][36] It remain under investigation, however, to what extent HMOX is involved in carbon monoxide's protective effect against hypoxia as 3 molar equivalents of oxygen are required to produce carbon monoxide from heme catabolism, along with the question of heme bioavailability,[37] and slow HMOX1 induction which may take several hours (e.g. the slow healing of a bruise).[38]
Ancient documentation for endogenous bilirubin traces back to medical humours written by Hippocrates.[39]
In most cases, HMOX selectively cleaves heme (iron protoporphyrin IX) at the α-methine bridge. The resulting bilirubin contains the suffix IXα to identify the composition of its structure by indicating its parent molecule was protoporphyrin IX cleaved at the alpha position (see protoporphyrin IX for further information on the Fischer nomenclature system). Drosophila melanogaster contains a unique HMOX that is not alpha specific resulting in formation of biliverdin IXα, IXβ, IXδ.[5] Non-enzymatic oxidation of heme is likewise non-specific resulting in ring opening at the α, β, γ, or δ positions.[22]
Ferrous ion is a common nomenclature used in the HMOX field for Iron(II) which appears in PubChem.[42] The iron liberated from HMOX is thought to be rapidly sequestered by ferritin. However, reactive oxygen species generated through the Fenton or Haber-Weiss reactions may enable downstream signaling.[43][44]
History
HMOX1 was first characterized by Tenhunen and Rudi Schmid upon demonstrating it as the enzyme responsible for catalyzing biotransformation of heme to bilirubin.[12]
Several labs attempted to explain the biotransformation of heme to biliverdin such as Nakajima et al. in 1962 who characterized a soluble "heme α-methenyl oxygenase", however the findings could not be reproduced and alternative non-enzymatic explanations for their observation emerged. The earliest evidence of oxidative enzymatic biotransformation of heme to a bilin was demonstrated by Hans Plieninger and Hans Fischer in 1942.[45] The discovery of HMOX is a unique case of academic lineage as Fischer was the academic adviser for Cecil Watson, and Watson was an adviser for Rudi Schmid.
Felix Hoppe-Seyler coined the name "haemoglobin"; haem being derived from Greek meaning blood, and globin from Latin globus meaning round object (see also: carboxyhemoglobin etymology). Hemoglobin was first discovered in the 1840s by Friedrich Ludwig Hünefeld.[46][47]Heme (as hemin coordinated with chlorine) was characterized by Ludwik Karol Teichmann in 1853. Many labs investigated in vitro transformation of heme into bilins throughout the 1930s exemplified by the work of Georg Barkan,[48] followed by Esther Killick who recognized a presence of carbon monoxide to correlate with pseudohemoglobin (an obsolete bilin term coined by Barkan) in 1940.[12] The endogenous biotransformation of heme to bilirubin is thought to have been definitively demonstrated with experimental evidence by Irving London in 1950,[49] although trace evidence for the endogenous formation of bilirubin has origins dating back several centuries in the context of jaundice with innumerable global contributions (see also: History of Bilirubin).[2][45]
CO was detected in exhaled breath 1869.[12]Felix Hoppe-Seyler developed the first qualitative carboxyhemoglobin test, and Josef von Fodor developed the first quantitative analytical test for carboxyhemoglobin.[12] The first reported detection of naturally occurring CO in human blood occurred in 1923 by Royd Ray Sayers et al. although they discarded their data as random error.[12]Alexander Gettler confirmed CO to have a normal presence in blood in 1933, however, he attributed the finding to inevitable pollution exposure or perhaps derived from the human microbiome.[9] Sjöstrand later demonstrated CO production from hemoglobin decomposition in 1952.[12]
References
^Ryter SW, Alam J, Choi AM (April 2006). "Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications". Physiological Reviews. 86 (2): 583–650. doi:10.1152/physrev.00011.2005. PMID16601269.
^ abVreman H, Wong R, Stevenson D (2001-10-30). "Sources, Sinks, and Measurement of Carbon Monoxide". Carbon Monoxide and Cardiovascular Functions. CRC Press. pp. 273–307. doi:10.1201/9781420041019.ch15 (inactive 2024-11-11). ISBN978-0-8493-1041-6.{{cite book}}: CS1 maint: DOI inactive as of November 2024 (link)
^ abcKikuchi G, Yoshida T, Noguchi M (December 2005). "Heme oxygenase and heme degradation". Biochemical and Biophysical Research Communications. 338 (1): 558–567. doi:10.1016/j.bbrc.2005.08.020. PMID16115609.
^Otterbein LE, Choi AM (December 2000). "Heme oxygenase: colors of defense against cellular stress". American Journal of Physiology. Lung Cellular and Molecular Physiology. 279 (6): L1029-37. doi:10.1152/ajplung.2000.279.6.L1029. PMID11076792. S2CID8813119.
^ abHopper CP, Meinel L, Steiger C, Otterbein LE (2018-10-11). "Where is the Clinical Breakthrough of Heme Oxygenase-1 / Carbon Monoxide Therapeutics?". Current Pharmaceutical Design. 24 (20): 2264–2282. doi:10.2174/1381612824666180723161811. PMID30039755. S2CID51712930.
^ abcdefghiHopper CP, De La Cruz LK, Lyles KV, Wareham LK, Gilbert JA, Eichenbaum Z, et al. (December 2020). "Role of Carbon Monoxide in Host-Gut Microbiome Communication". Chemical Reviews. 120 (24): 13273–13311. doi:10.1021/acs.chemrev.0c00586. PMID33089988. S2CID224824871.
^Salerno L, Floresta G, Ciaffaglione V, Gentile D, Margani F, Turnaturi R, et al. (April 2019). "Progress in the development of selective heme oxygenase-1 inhibitors and their potential therapeutic application". European Journal of Medicinal Chemistry. 167: 439–453. doi:10.1016/j.ejmech.2019.02.027. PMID30784878. S2CID73496388.
^ abcdO'Carra P, Colleran E (1977). "Chapter 3: Nonenzymatic and quasi-enzymic models for catabolic heme cleavage". In Berk PD, Berlin NI (eds.). International Symposium on Chemistry and Physiology of Bile Pigments. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health. pp. 26–40.
^Berk PD, Berlin NI (1977). "Chapter 4: Mechanism of the ring opening of heme". International Symposium on Chemistry and Physiology of Bile Pigments. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health. pp. 42–66.
^Correa-Costa M, Otterbein LE (2014). "Eat to Heal: Natural Inducers of the Heme Oxygenase-1 System". In Folkerts G, Garssen J (eds.). Pharma-Nutrition. secondary. AAPS Advances in the Pharmaceutical Sciences Series. Vol. 12. Springer, Cham. pp. 243–256. doi:10.1007/978-3-319-06151-1_12. ISBN978-3-319-06150-4.
^Cheng Y, Rong J (2017-10-03). "Therapeutic Potential of Heme Oxygenase-1/carbon Monoxide System Against Ischemia-Reperfusion Injury". Current Pharmaceutical Design. 23 (26): 3884–3898. doi:10.2174/1381612823666170413122439. PMID28412905.
^ abcMotterlini R, Otterbein LE (September 2010). "The therapeutic potential of carbon monoxide". Nature Reviews. Drug Discovery. 9 (9): 728–43. doi:10.1038/nrd3228. PMID20811383. S2CID205477130.
^Shimizu T, Lengalova A, Martínek V, Martínková M (December 2019). "Heme: emergent roles of heme in signal transduction, functional regulation and as catalytic centres". Chemical Society Reviews. 48 (24): 5624–5657. doi:10.1039/C9CS00268E. PMID31748766. S2CID208217502.
^Shimizu T, Huang D, Yan F, Stranava M, Bartosova M, Fojtíková V, Martínková M (July 2015). "Gaseous O2, NO, and CO in signal transduction: structure and function relationships of heme-based gas sensors and heme-redox sensors". Chemical Reviews. 115 (13): 6491–533. doi:10.1021/acs.chemrev.5b00018. PMID26021768.
^Watson, Cecil J. (1977). "Historical Review of Bilirubin Chemistry". In Berk, Paul D. (ed.). International Symposium on Chemistry and Physiology of Bile Pigments. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health. pp. 3–16
^Sies H, Jones DP (July 2020). "Reactive oxygen species (ROS) as pleiotropic physiological signalling agents". Nature Reviews. Molecular Cell Biology. 21 (7): 363–383. doi:10.1038/s41580-020-0230-3. PMID32231263. S2CID214695993.
^NaveenKumar SK, SharathBabu BN, Hemshekhar M, Kemparaju K, Girish KS, Mugesh G (August 2018). "The Role of Reactive Oxygen Species and Ferroptosis in Heme-Mediated Activation of Human Platelets". ACS Chemical Biology. 13 (8): 1996–2002. doi:10.1021/acschembio.8b00458. PMID29869870. S2CID46936967.
Indonesian association football player Witan Sulaeman Witan playing for Indonesia in 2023Personal informationFull name Witan Sulaeman[1]Date of birth (2001-10-08) 8 October 2001 (age 22)[1]Place of birth Palu, IndonesiaHeight 1.70 m (5 ft 7 in)[2]Position(s) Winger, attacking midfielderTeam informationCurrent team Bhayangkara(on loan from Persija Jakarta)Number 88Youth career2013–2015 SSB Galara2016–2019 SKO RagunanSenior career*Years Team Apps ...
Viktor Vladimirovič Erofeev Viktor Vladimirovič Erofeev (in russo Виктор Владимирович Ерофеев?; Mosca, 19 settembre 1947) è uno scrittore, critico letterario e giornalista russo noto anche nel resto d'Europa, soprattutto in Francia. Indice 1 Biografia 2 Opere tradotte in Inglese 3 Opere tradotte in Italiano 4 Note 5 Altri progetti 6 Collegamenti esterni Biografia Ha trascorso gran parte della propria infanzia a Parigi, poi è tornato in Patria. Laureatosi nel ...
Dalam penerbangan PSU adalah singkatan untuk Passenger Service Unit, Unit Pelayanan Penumpang. Komponen pesawat ini terletak di atas setiap baris kursi di panel atas di atas kursi penumpang di kabin dari pesawat yang. PSU antara lain terdiri dari lampu baca, pengeras suara, tanda iluminasi dan masker oksigen otomatis dan juga menyediakan kisi-kisi AC. Referensi Pranala luar PECO manufactures the Passenger Service Units Passenger Service Units (PSU) Diarsipkan 2011-09-15 di Wayback Machine. A...
Brunetto Latini Brunetto Latini, noto anche come Brunetto Latino (Firenze, 1220 circa – 1294 o 1295), è stato uno scrittore, poeta, politico e notaio italiano, autore di opere in volgare italiano e francese. Fu notissimo in età medioevale per la sua poesia di carattere etico - morale, e come autore del Tesoretto e del Livres dou Tresor. Per i moderni è noto soprattutto per la sua omosessualità, per cui è stato inserito dall'allievo Dante Alighieri, nel settimo cerchio dell'Inferno, nel...
1938 film The Girl of the Golden WestDirected byRobert Z. LeonardWritten byIsabel DawnBoyce DeGawBased onThe Girl of the Golden West1905 playby David BelascoProduced byRobert Z. LeonardWilliam Anthony McGuireStarringJeanette MacDonaldNelson EddyWalter PidgeonCinematographyOliver T. MarshEdited byW. Donn HayesMusic byHerbert StothartProductioncompanyMetro-Goldwyn-MayerDistributed byLoew's, Inc.Release date March 18, 1938 (1938-03-18) Running time121 minutesCountryUnited StatesLa...
Patung perunggu Tombili di Ziverbey (Kadıköy), Istanbul Tombili (tempat dan tanggal lahir tidak diketahui, meninggal pada 1 Agustus 2016 di Istanbul) adalah kucing jalanan dari Istanbul, Turki. Ia terkenal karena foto dirinya yang tengah duduk dan bersandar di trotoar.[1] Setelah kematiannya, Kota Istanbul memberi bentuk penghormatan kepada Tombili dengan sebuah patung. Kehidupan Tombili (panggilan umum untuk hewan peliharaan gemuk di Turki)[2] adalah kucing jalanan yang tin...
Metro-North Railroad station in Manhattan, New York For the future Second Avenue Subway station named Harlem–125th Street, see 125th Street station (IRT Lexington Avenue Line). For other uses, see 125th Street (disambiguation) and Harlem station (disambiguation). Harlem–125th StreetTwo trains at Harlem–125th Street station in December 2021General informationLocation101 East 125th Street, East Harlem, Manhattan, New YorkCoordinates40°48′19″N 73°56′20″W / 40.8052...
Howard e il destino del mondoHoward (Ed Gale) in una scena del filmTitolo originaleHoward the Duck Paese di produzioneStati Uniti d'America Anno1986 Durata111 min Generefantascienza, commedia, azione, avventura RegiaWillard Huyck Soggettofumetto della Marvel Comics SceneggiaturaWillard Huyck, Gloria Katz ProduttoreGloria Katz Produttore esecutivoGeorge Lucas Casa di produzioneUniversal Studios, Lucasfilm FotografiaRichard H. Kline MontaggioMichael Chandler, Sidney Wolinsky Effetti...
US record label Scepter RecordsParent companyGusto RecordsFounded1959 (1959)FounderFlorence GreenbergGenrePop, soulCountry of originU.S.LocationNew York City Scepter Records was an American record company founded in 1959 by Florence Greenberg. History Florence Greenberg founded Scepter Records from the $4,000 she received after she sold Tiara Records and the Shirelles to Decca Records. When the Shirelles didn't produce any hits for Decca, they were given back to Greenberg, who promptly s...
New York City Subway station in Queens New York City Subway station in Queens, New York Jackson Heights– Roosevelt Avenue/74 Street New York City Subway station complexThe station complex and adjoining bus terminal as seen from Broadway and 75th StreetStation statisticsAddressRoosevelt Avenue, 74th Street & BroadwayJackson Heights, NYBoroughQueensLocaleJackson HeightsCoordinates40°44′48″N 73°53′28″W / 40.74667°N 73.8...
Black Myth: Wukong Publikasi2023GenrePermainan bermain peran aksiLisensiLisensi proprietarium Bahasa Daftar Inggris dan Tionghoa 60 EponimSun Go Kong Karakteristik teknisPlatformWindows, PlayStation 5 dan Xbox Series X dan S MesinUnreal Engine 5[1]ModePermainan video pemain tunggal FormatCakram Blu-ray dan distribusi digital Metode inputpapan tombol komputer, tetikus dan gamepad Format kode Daftar 30 Informasi pengembangPengembangGame SciencePenerbitPlayStation Store dan Bursa Micros...
لمعانٍ أخرى، طالع سانت كلير (توضيح). سانت كلير الإحداثيات 42°49′23″N 82°29′32″W / 42.823055555556°N 82.492222222222°W / 42.823055555556; -82.492222222222 [1] تاريخ التأسيس 1828 تقسيم إداري البلد الولايات المتحدة[2] التقسيم الأعلى مقاطعة سانت كلير خصائص جغرافية ...
Horse race Longines Hong Kong SprintGroup 1 raceLocationSha Tin RacecourseHong Kong, ChinaInaugurated1999Race typeFlat / ThoroughbredSponsorLonginesWebsiteHong Kong Jockey ClubRace informationDistance1,200 metres (a6f)SurfaceTurfTrackRight-handedQualificationThree-years-old and upWeight126 lbAllowances4 lb for fillies and maresPurseHK$26,000,000 (2023)[1]1st: HK$14,560,000Bonusessee Global Sprint Challenge The Hong Kong Sprint is a Group 1 flat horse race in Hong Kong which is open to...
Untuk kegunaan lain, lihat Bartolo. Andrea di Bartolo (1360/70 – Siena 1428) adalah seorang pelukis Italia dari sekolah Siena, yang aktif antara 1389–1428. Kehidupan Ia adalah satu-satunya putra dari sembilan bersaudara, dari pelukis Bartolo di Fredi. Andrea memiliki dua putra yang menjadi artis, Giorgio di Andrea di Bartolo (aktif 1409 sampai 1428), dan Ansan di Andrea di Bartolo (aktif 1439 sampai 1480), yang bekerja dengan Sano di Pietro Sumber untuk karyanya Artcyclopedia Web Gallery ...
Cet article est une ébauche concernant un terme géographique. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Carte de l'hémisphère est. L'hémisphère est[1] ou hémisphère oriental, est la moitié de la Terre comprise à l'est du méridien de Greenwich jusqu'au 180e méridien. Il couvre le continent asiatique, l'océan Indien, l'Australie, la plupart du continent africain et du continent européen, u...
Oscillating dynamical system with nonlinear damping In the study of dynamical systems, the van der Pol oscillator (named for Dutch physicist Balthasar van der Pol) is a non-conservative, oscillating system with non-linear damping. It evolves in time according to the second-order differential equation d 2 x d t 2 − μ ( 1 − x 2 ) d x d t + x = 0 , {\displaystyle {d^{2}x \over dt^{2}}-\mu (1-x^{2}){dx \over dt}+x=0,} where x is the position coordinate—which is a function o...
هذه المقالة عن مرض السكري. لمعانٍ أخرى، طالع السكري (توضيح). السكري رمز الدائرة الزرقاء العالمية لمرض السكري[1]رمز الدائرة الزرقاء العالمية لمرض السكري[1] معلومات عامة الاختصاص علم الغدد الصماء من أنواع مرض استقلاب الغلوكوز [لغات أخرى]، ومرض ا�...
فايشنافيةمعلومات عامةصنف فرعي من هندوسية سُمِّي باسم فيشنو المكان شبه القارة الهنديةعالميًّا تعديل - تعديل مصدري - تعديل ويكي بيانات الفايشنافية (بالسنسكريتية: वैष्णव धर्म، ”فيشنو دارما“) هي فرع من الفروع الرئيسية للهندوسية إلى جانب الشيفية والسمارتية والشاكتية....
Artikel ini merupakan bagian dari seriKota Vatikan Sejarah Kadipaten Roma (533–751) Donasi Pippin (750-an) Negara Kepausan (754–1870) Annatae Kongregasi untuk Perbatasan Undang-Undang Dasar Pemerintahan Sekuler Negara Gereja Penyerangan Roma oleh Muslim (846) Penaklukan Roma (1870) Tahanan dalam Vatikan (1870–1929) Permasalahan Roma Undang-Undang Jaminan Perjanjian Lateran (1929) Kota Vatikan (1929–sekarang) Gubernur Kota Vatikan Sejarah Gereja Katolik sejak 1962 Sejarah kepausan Inst...
Charity This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: NFL Foundation – news · newspapers · books · scholar · JSTOR (May 2017) (Learn how and when to remove this message) NFL FoundationFormation1973; 51 years ago (1973)ChairCharlotte Jones AndersonBoard of directorsSusie Spanos, Steve...