Helmholtz reciprocity

The Helmholtz reciprocity principle describes how a ray of light and its reverse ray encounter matched optical adventures, such as reflections, refractions, and absorptions in a passive medium, or at an interface. It does not apply to moving, non-linear, or magnetic media.

For example, incoming and outgoing light can be considered as reversals of each other,[1] without affecting the bidirectional reflectance distribution function (BRDF)[2] outcome. If light was measured with a sensor and that light reflected on a material with a BRDF that obeys the Helmholtz reciprocity principle one would be able to swap the sensor and light source and the measurement of flux would remain equal.

In the computer graphics scheme of global illumination, the Helmholtz reciprocity principle is important if the global illumination algorithm reverses light paths (for example raytracing versus classic light path tracing).

Physics

The Stokes–Helmholtz reversion–reciprocity principle[3][4][5][6][7][8][9][10][11][12][13][1][14][15][16][17][18][19][20][21][22][excessive citations] was stated in part by Stokes (1849)[3] and with reference to polarization on page 169 [4] of Hermann Helmholtz's Handbuch der physiologischen Optik of 1856 as cited by Gustav Kirchhoff[8] and by Max Planck.[13]

As cited by Kirchhoff in 1860, the principle is translated as follows:

A ray of light proceeding from point 1 arrives at point 2 after suffering any number of refractions, reflections, &c. At point 1 let any two perpendicular planes a1, b1 be taken in the direction of the ray; and let the vibrations of the ray be divided into two parts, one in each of these planes. Take similar planes a2, b2 in the ray at point 2; then the following proposition may be demonstrated. If when the quantity of light i polarized in the plane a1 proceeds from 1 in the direction of the given ray, that part k thereof of light polarized in a2 arrives at 2, then, conversely, if the quantity of light i polarized in a2 proceeds from 2, the same quantity of light k polarized in a1 [Kirchhoff's published text here corrected by Wikipedia editor to agree with Helmholtz's 1867 text] will arrive at 1.[8]

Simply put, in suitable conditions, the principle states that the source and observation point may be switched without changing the measured intensity. Intuitively, "If I can see you, you can see me." Like the principles of thermodynamics, in suitable conditions, this principle is reliable enough to use as a check on the correct performance of experiments, in contrast with the usual situation in which the experiments are tests of a proposed law.[1][12]

In his magisterial proof[23] of the validity of Kirchhoff's law of equality of radiative emissivity and absorptivity,[24] Planck makes repeated and essential use of the Stokes–Helmholtz reciprocity principle. Rayleigh stated the basic idea of reciprocity as a consequence of the linearity of propagation of small vibrations, light consisting of sinusoidal vibrations in a linear medium.[9][10][11][12]

When there are magnetic fields in the path of the ray, the principle does not apply.[4] Departure of the optical medium from linearity also causes departure from Helmholtz reciprocity, as well as the presence of moving objects in the path of the ray.

Helmholtz reciprocity referred originally to light. This is a particular form of electromagnetism that may be called far-field radiation. For this, the electric and magnetic fields do not need distinct descriptions, because they propagate feeding each other evenly. So the Helmholtz principle is a more simply described special case of electromagnetic reciprocity in general, which is described by distinct accounts of the interacting electric and magnetic fields. The Helmholtz principle rests mainly on the linearity and superposability of the light field, and it has close analogues in non-electromagnetic linear propagating fields, such as sound. It was discovered before the electromagnetic nature of light became known.[9][10][11][12]

The Helmholtz reciprocity theorem has been rigorously proven in a number of ways,[25][26][27] generally making use of quantum mechanical time-reversal symmetry. As these more mathematically complicated proofs may detract from the simplicity of the theorem, A.P Pogany and P. S. Turner have proven it in only a few steps using a Born series.[28] Assuming a light source at a point A and an observation point O, with various scattering points between them, the Schrödinger equation may be used to represent the resulting wave function in space:

By applying a Green's function, the above equation can be solved for the wave function in an integral (and thus iterative) form:

where

.

Next, it is valid to assume the solution inside the scattering medium at point O may be approximated by a Born series, making use of the Born approximation in scattering theory. In doing so, the series may be iterated through in the usual way to generate the following integral solution:

Noting again the form of the Green's function, it is apparent that switching and in the above form will not change the result; that is to say, , which is the mathematical statement of the reciprocity theorem: switching the light source A and observation point O does not alter the observed wave function.

Applications

One simple yet important implication of this reciprocity principle is that any light directed through a lens in one direction (from object to image plane) is optically equal to its conjugate, i.e. light being directed through the same set-up but in the opposite direction. An electron being focused through any series of optical components does not “care” from which direction it comes; as long as the same optical events happen to it, the resulting wave function will be the same. For that reason, this principle has important applications in the field of transmission electron microscopy (TEM). The notion that conjugate optical processes produce equivalent results allows the microscope user to grasp a deeper understanding of, and have considerable flexibility in, techniques involving electron diffraction, Kikuchi patterns,[29] dark-field images,[28] and others.

An important caveat to note is that in a situation where electrons lose energy after interacting with the scattering medium of the sample, there is not time-reversal symmetry. Therefore, reciprocity only truly applies in situations of elastic scattering. In the case of inelastic scattering with small energy loss, it can be shown that reciprocity may be used to approximate intensity (rather than wave amplitude).[28] So in very thick samples or samples in which inelastic scattering dominates, the benefits of using reciprocity for the previously mentioned TEM applications are no longer valid. Furthermore, it has been demonstrated experimentally that reciprocity does apply in a TEM under the right conditions,[28] but the underlying physics of the principle dictates that reciprocity can only be truly exact if ray transmission occurs through only scalar fields, i.e. no magnetic fields. We can therefore conclude that the distortions to reciprocity due to magnetic fields of the electromagnetic lenses in TEM may be ignored under typical operating conditions.[30] However, users should be careful not to apply reciprocity to magnetic imaging techniques, TEM of ferromagnetic materials, or extraneous TEM situations without careful consideration. Generally, polepieces for TEM are designed using finite element analysis of generated magnetic fields to ensure symmetry.  

Magnetic objective lens systems have been used in TEM to achieve atomic-scale resolution while maintaining a magnetic field free environment at the plane of the sample,[31] but the method of doing so still requires a large magnetic field above (and below) the sample, thus negating any reciprocity enhancement effects that one might expect. This system works by placing the sample in between the front and back objective lens polepieces, as in an ordinary TEM, but the two polepieces are kept in exact mirror symmetry with respect to the sample plane between them. Meanwhile, their excitation polarities are exactly opposite, generating magnetic fields that cancel almost perfectly at the plane of the sample. However, since they do not cancel elsewhere, the electron trajectory must still pass through magnetic fields.

Reciprocity can also be used to understand the main difference between TEM and scanning transmission electron microscopy (STEM), which is characterized in principle by switching the position of the electron source and observation point. This is effectively the same as reversing time on a TEM so that electrons travel in the opposite direction. Therefore, under appropriate conditions (in which reciprocity does apply), knowledge of TEM imaging can be useful in taking and interpreting images with STEM.

See also

References

  1. ^ a b c Hapke, B. (1993). Theory of Reflectance and Emittance Spectroscopy, Cambridge University Press, Cambridge UK, ISBN 0-521-30789-9, Section 10C, pages 263-264.
  2. ^ Hapke, B. (1993). Theory of Reflectance and Emittance Spectroscopy, Cambridge University Press, Cambridge UK, ISBN 0-521-30789-9, Chapters 8-9, pages 181-260.
  3. ^ a b Stokes, G.G. (1849). "On the perfect blackness of the central spot in Newton's rings, and on the verification of Fresnel's formulae for the intensities of reflected and refracted rays". Cambridge and Dublin Mathematical Journal. new series. 4: 1-14.
  4. ^ a b c Helmholtz, H. von (1856). Handbuch der physiologischen Optik, first edition cited by Planck, Leopold Voss, Leipzig, volume 1, page 169.[1]
  5. ^ Helmholtz, H. von (1903). Vorlesungen über Theorie der Wärme, edited by F. Richarz, Johann Ambrosius Barth, Leipzig, pages 158-162.
  6. ^ Helmholtz, H. (1859/60). Theorie der Luftschwingungen in Röhren mit offenen Enden, Crelle's Journal für die reine und angewandte Mathematik 57(1): 1-72, page 29.
  7. ^ Stewart, B. (1858). An account of some experiments on radiant heat, involving an extension of Professor Prevost's theory of exchanges, Trans. Roy. Soc. Edinburgh 22 (1): 1-20, page 18.
  8. ^ a b c Kirchhoff, G. (1860). On the Relation between the Radiating and Absorbing Powers of different Bodies for Light and Heat, Ann. Phys., 119: 275-301, at page 287 [2], translated by F. Guthrie, Phil. Mag. Series 4, 20:2-21, at page 9.
  9. ^ a b c Strutt, J.W. (Lord Rayleigh) (1873). Some general theorems relating to vibrations, Proc. Lond. Math. Soc. 4: 357-368, pages 366-368.
  10. ^ a b c Rayleigh, Lord (1876). On the application of the Principle of Reciprocity to acoustics, Proc. Roy. Soc. A, 25: 118-122.
  11. ^ a b c Strutt, J.W., Baron Rayleigh (1894/1945). The Theory of Sound, second revised edition, Dover, New York, volume 1, sections 107-111a.
  12. ^ a b c d Rayleigh, Lord (1900). On the law of reciprocity in diffuse reflection, Phil. Mag. series 5, 49: 324-325.
  13. ^ a b Planck, M. (1914). The Theory of Heat Radiation, second edition translated by M. Masius, P. Blakiston's Son and Co., Philadelphia, page 35.
  14. ^ Minnaert, M. (1941). The reciprocity principle in lunar photometry, Astrophysical Journal 93: 403-410.[3]
  15. ^ Mahan, A.I. (1943). A mathematical proof of Stokes' reversibility principle, J. Opt. Soc. Am., 33(11): 621-626.
  16. ^ Chandrasekhar, S. (1950). Radiative Transfer, Oxford University Press, Oxford, pages 20-21, 171-177, 182.
  17. ^ Tingwaldt, C.P. (1952). Über das Helmholtzsche Reziprozitätsgesetz in der Optik, Optik, 9(6): 248-253.
  18. ^ Levi, L. (1968). Applied Optics: A Guide to Optical System Design, 2 volumes, Wiley, New York, volume 1, page 84.
  19. ^ Clarke, F.J.J., Parry, D.J. (1985). Helmholtz reciprocity: its validity and application to reflectometry, Lighting Research & Technology, 17(1): 1-11.
  20. ^ Lekner, J. (1987). Theory of reflection, Martinus Nijhoff, Dordrecht, ISBN 90-247-3418-5, pages 33-37.[4]
  21. ^ Born, M., Wolf, E. (1999). Principles of Optics: Electromagnetic theory of propagation, interference and diffraction of light, 7th edition, Cambridge University Press, ISBN 0-521-64222-1, page 423.
  22. ^ Potton, R J (April 27, 2004). "Reciprocity in optics". Reports on Progress in Physics. 67 (5). IOP Publishing: 717–754. Bibcode:2004RPPh...67..717P. doi:10.1088/0034-4885/67/5/r03. ISSN 0034-4885. S2CID 250849465.
  23. ^ Planck, M. (1914). The Theory of Heat Radiation, second edition translated by M. Masius, P. Blakiston's Son and Co., Philadelphia, pages 35, 38,39.
  24. ^ Kirchhoff, G. (1860). On the Relation between the Radiating and Absorbing Powers of different Bodies for Light and Heat, Ann. Phys., 119: 275-301 [5], translated by F. Guthrie, Phil. Mag. Series 4, 20:2-21.
  25. ^ Helmholtz, Hermann von (1867). a, Hermann von Helmholtz u (ed.). Handbuch der physiologischen Optik (in German). Leipzig: L. Voss.
  26. ^ Wells, Oliver C. (July 23, 2008). "Reciprocity between the reflection electron microscope and the low‐loss scanning electron microscope". Applied Physics Letters. 37 (6): 507–510. doi:10.1063/1.91992. ISSN 0003-6951.
  27. ^ Spindler, Paul (de Chemnitz) Auteur du texte; Meyer, Georg (1857-1950) Auteur du texte; Meerburg, Jacob Hendrik Auteur du texte (1860). "Annalen der Physik". Gallica. Retrieved December 11, 2019.{{cite web}}: CS1 maint: numeric names: authors list (link)
  28. ^ a b c d Pogany, A. P.; Turner, P. S. (January 23, 1968). "Reciprocity in electron diffraction and microscopy". Acta Crystallographica Section A. 24 (1): 103–109. Bibcode:1968AcCrA..24..103P. doi:10.1107/S0567739468000136. ISSN 1600-5724.
  29. ^ Kainuma, Y. (May 10, 1955). "The Theory of Kikuchi patterns". Acta Crystallographica. 8 (5): 247–257. doi:10.1107/S0365110X55000832. ISSN 0365-110X.
  30. ^ Hren, John J; Goldstein, Joseph I; Joy, David C, eds. (1979). Introduction to Analytical Electron Microscopy | SpringerLink (PDF). doi:10.1007/978-1-4757-5581-7. ISBN 978-1-4757-5583-1.
  31. ^ Shibata, N.; Kohno, Y.; Nakamura, A.; Morishita, S.; Seki, T.; Kumamoto, A.; Sawada, H.; Matsumoto, T.; Findlay, S. D.; Ikuhara, Y. (May 24, 2019). "Atomic resolution electron microscopy in a magnetic field free environment". Nature Communications. 10 (1): 2308. Bibcode:2019NatCo..10.2308S. doi:10.1038/s41467-019-10281-2. ISSN 2041-1723. PMC 6534592. PMID 31127111.

Read other articles:

Satwiksairaj RankireddyInformasi pribadiKebangsaan IndiaLahir13 Agustus 2000 (umur 23)Amalapuram, Distrik Godavari Timur, Andhra PradeshTinggi184 m (603 ft 8 in)Berat77 kg (170 pon)PeganganKananGanda putra & campuranPeringkat tertinggi7 (MD 12 November 2019) 21 (XD 6 Desember 2018)Peringkat saat ini7 (MD), 25 (XD) (8 November 2022[1])Profil di BWF Satwiksairaj Rankireddy (lahir 13 Agustus 2000) adalah pemain bulu tangkis putra berkewarganega...

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

2012 2022 Élections législatives de 2017 dans la Sarthe 5 sièges de députés à l'Assemblée nationale 11 et 18 juin 2017 Type d’élection Élections législatives Campagne 22 mai au 10 juin12 juin au 16 juin Débat(s) 1re circonscription : 1er tour : lundi 29 mai sur Fréquence Sillé[1]2e tour : vendredi 16 juin sur Fréquence Sillé en partenariat avec les Alpes Mancelles[2]vendredi 16 juin sur Le Mans Télévision[3]2e circonscription : jeudi 15 juin sur Le...

Nom officiel Централный Аерогидродинамический Институт, ЦАГИ Nom en français TsAGI Pays Russie Siège social Joukovski Création 1er décembre 1918 Effectif 3 700 Directeur général Boris S. Alyoshin Site Internet http://www.tsagi.com/ modifier  TsAGI, à gauche - Soufflerie subsonique T-105 TsAGI est l'acronyme russe de Institut central d'aérohydrodynamique (Централный Аерогидродинамический Институт, �...

 

Cet article est une ébauche concernant la géographie de la Catalogne et les Pyrénées. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Ripollès Administration Pays Espagne Communauté autonome Catalogne Province Province de Gérone Nombre de communes 14 Démographie Population 26 831 hab. (2008) Densité 28 hab./km2 Géographie Coordonnées 42° 16′ 16″ nord, 2° 15′&...

 

Season of television series Agents of S.H.I.E.L.D.Season 2Promotional poster and home media cover artStarring Clark Gregg Ming-Na Wen Brett Dalton Chloe Bennet Iain De Caestecker Elizabeth Henstridge Nick Blood Adrianne Palicki No. of episodes22ReleaseOriginal networkABCOriginal releaseSeptember 23, 2014 (2014-09-23) –May 12, 2015 (2015-05-12)Season chronology← PreviousSeason 1Next →Season 3List of episodes The second season of the American television series Ag...

1957 Japanese film by Akira Kurosawa Throne of BloodTheatrical release posterDirected byAkira KurosawaScreenplay by Shinobu Hashimoto Ryūzō Kikushima Akira Kurosawa Hideo Oguni Based onMacbethby William Shakespeare (uncredited)Produced by Sōjirō Motoki Akira Kurosawa Starring Toshiro Mifune Isuzu Yamada Takashi Shimura CinematographyAsakazu NakaiEdited byAkira KurosawaMusic byMasaru SatoProductioncompanyToho Co., LtdDistributed byTohoRelease date January 15, 1957 (1957-01-1...

 

Military university in Malaysia This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: National Defence University of Malaysia – news · newspapers · books · scholar · JSTOR (May 2017) (Learn how and when to remove this template message) National Defence University of MalaysiaUniversiti Pertahanan Nasional MalaysiaS...

 

152d Air Operations GroupCountry United StatesAllegiance New YorkBranch  Air National GuardTypeGroupRoleAir Operations CenterGarrison/HQHancock Field Air National Guard Base, Syracuse, New YorkCommandersCurrentcommanderCol Kevin Saint St. John Deputy, CC Col John Smiley Meili CMSgt Christopher Vandemortel Group SuperintendentInsignia152d Air Operations Group emblemMilitary unit The 152d Air Operations Group (152 AOG) is a unit of the New York Air National Guard, stationed at Ha...

Questa voce o sezione sull'argomento storia del cinema è priva o carente di note e riferimenti bibliografici puntuali. Sebbene vi siano una bibliografia e/o dei collegamenti esterni, manca la contestualizzazione delle fonti con note a piè di pagina o altri riferimenti precisi che indichino puntualmente la provenienza delle informazioni. Puoi migliorare questa voce citando le fonti più precisamente. Derek Jarman Caro William Shakespeare, ho 14 anni e sono queer come te, studio arte e ...

 

Strada R504 KolymaLocalizzazioneStato Russia Circondari federaliSacha-Jacuzia Soggetti federaliOblast' di Magadan DatiClassificazionestrada federale InizioNižnij Bestjach FineMagadan Lunghezza2.036 km Data apertura2008 Percorso Manuale Il ponte sulla Kolyma La strada R504 «Kolyma», nota anche come strada delle Ossa, è una strada federale russa di collegamento fra le città di Magadan, sul mare di Ochotsk, e Nižnij Bestjach, situata sulla riva orientale della Lena di fronte a Jakutsk...

 

Canadian politician For the politician from Alberta, see Donald S. Fleming. For the Canadian chemist, see Donald Fleming (chemist). For the American historian, see Donald Harnish Fleming. Donald FlemingMinister of JusticeIn officeAugust 9, 1962 – April 21, 1963Prime MinisterJohn DiefenbakerPreceded byDavie FultonSucceeded byLionel ChevrierMinister of FinanceIn officeJune 21, 1957 – August 8, 1962Prime MinisterJohn DiefenbakerPreceded byWalter HarrisSucceeded byGeorge Now...

Mbarara Land of Milk.Motto: Ebirungi Biruga Omutuutu (Good things come from sweat)Country UgandaRegionWestern RegionSub-regionAnkole sub-regionDistrictMbarara DistrictFounded1901Township1957Municipality1974Pemerintahan • MayorKakyebezi Robert [1]Populasi (2014 Census) • Total195.013[2]Zona waktu+3 (East African Standard Time) Mbarara adalah kota yang terletak di Uganda barat daya, terletak sekitar 266 km dari Kampala. Kota ini merupakan k...

 

National Serigraph SocietyFormation1940 (1940)PurposeTo support and promote American artists creating and printing works using the silkscreen process.Formerly calledSilk Screen Group The National Serigraph Society was founded in 1940 by a group of artists involved in the WPA Federal Art Project, including Anthony Velonis, Max Arthur Cohn, and Hyman Warsager.[1][2][3] The creation of the society coincided with the rise of serigraphs being used as a medium for fine ...

 

У этого термина существуют и другие значения, см. Детский мир. ПАО «Детский мир» Тип Публичная компания Листинг на бирже MCX: DSKY Основание 1947; 77 лет назад (1947) Расположение  Россия: Москва  Белоруссия: Гродно  Казахстан: Алматы Ключевые фигуры Генеральный �...

German automobile Not to be confused with Volkswagen Routan. Motor vehicle Volkswagen TouranOverviewManufacturerVolkswagenAlso calledVolkswagen Golf Touran (Japan)[1][2]Production2003–presentBody and chassisClassCompact MPV (M)Body style5-door MPVLayoutFront-engine, front-wheel-drive The Volkswagen Touran is a car manufactured by German automaker Volkswagen since 2003 and sold in Europe and other select markets. A compact multi-purpose vehicle (MPV),[improper s...

 

Study of handwriting and manuscripts Not to be confused with Palaeogeography. William Shakespeare's will, written in secretary hand[1] Palaeography (UK) or paleography (US; ultimately from Greek: παλαιός, palaiós, 'old', and γράφειν, gráphein, 'to write') is the study and academic discipline of the analysis of historical writing systems, the historicity of manuscripts and texts, subsuming deciphering and dating of historical manuscripts, including the analysis of histo...

 

Artikel ini bukan mengenai jersi (kain). Lihat pula: Jersei ketiga, Jersei hoki, Seragam bola basket, Seragam bisbol, dan Seragam (sepak bola Amerika) Bagian ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Jersei – berita · surat kabar · buku · cendekiawan · JSTOR...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Tamenglong – news · newspapers · books · scholar · JSTOR (December 2018) (Learn how and when to remove this message) Town in Manipur, IndiaTamenglongTownTamenglongLocation in Manipur, IndiaShow map of ManipurTamenglongTamenglong (India)Show map of IndiaCoordina...

 

Ketua Konferensi Permusyawaratan Politik Rakyat TiongkokLambang Konferensi Permusyawaratan Politik Rakyat TiongkokPetahanaWang Yangsejak 14 Maret, 2018Ditunjuk olehVotingMasa jabatanLima tahunPejabat perdanaMao ZedongDibentuk1 Oktober, 1949 Ketua Konferensi Permusyawaratan Politik Rakyat Tiongkok (Hanzi sederhana: 中国人民政治协商会议全国委员会主席; Hanzi tradisional: 中國人民政治協商會議全國委員會主席; Pinyin: Zhōngguó Rénmín Zhèngzhì ...