Graph power

The square of a graph

In graph theory, a branch of mathematics, the kth power Gk of an undirected graph G is another graph that has the same set of vertices, but in which two vertices are adjacent when their distance in G is at most k. Powers of graphs are referred to using terminology similar to that of exponentiation of numbers: G2 is called the square of G, G3 is called the cube of G, etc.[1]

Graph powers should be distinguished from the products of a graph with itself, which (unlike powers) generally have many more vertices than the original graph.

Properties

If a graph has diameter d, then its d-th power is the complete graph.[2] If a graph family has bounded clique-width, then so do its d-th powers for any fixed d.[3]

Coloring

Graph coloring on the square of a graph may be used to assign frequencies to the participants of wireless communication networks so that no two participants interfere with each other at any of their common neighbors,[4] and to find graph drawings with high angular resolution.[5]

Both the chromatic number and the degeneracy of the kth power of a planar graph of maximum degree Δ are Ok/2⌋), where the degeneracy bound shows that a greedy coloring algorithm may be used to color the graph with this many colors.[4] For the special case of a square of a planar graph, Wegner conjectured in 1977 that the chromatic number of the square of a planar graph is at most max(Δ + 5, /2 + 1), and it is known that the chromatic number is at most /3 + O(1).[6][7] More generally, for any graph with degeneracy d and maximum degree Δ, the degeneracy of the square of the graph is O(dΔ), so many types of sparse graph other than the planar graphs also have squares whose chromatic number is proportional to Δ.

Although the chromatic number of the square of a nonplanar graph with maximum degree Δ may be proportional to Δ2 in the worst case, it is smaller for graphs of high girth, being bounded by O2 / log Δ) in this case.[8]

Determining the minimum number of colors needed to color the square of a graph is NP-hard, even in the planar case.[9]

Hamiltonicity

The cube of every connected graph necessarily contains a Hamiltonian cycle.[10] It is not necessarily the case that the square of a connected graph is Hamiltonian, and it is NP-complete to determine whether the square is Hamiltonian.[11] Nevertheless, by Fleischner's theorem, the square of a 2-vertex-connected graph is always Hamiltonian.[12]

Computational complexity

The kth power of a graph with n vertices and m edges may be computed in time O(mn) by performing a breadth first search starting from each vertex to determine the distances to all other vertices, or slightly faster using more sophisticated algorithms.[13] Alternatively, If A is an adjacency matrix for the graph, modified to have nonzero entries on its main diagonal, then the nonzero entries of Ak give the adjacency matrix of the kth power of the graph,[14] from which it follows that constructing kth powers may be performed in an amount of time that is within a logarithmic factor of the time for matrix multiplication.

The kth powers of trees can be recognized in time linear in the size of the input graph. [15]

Given a graph, deciding whether it is the square of another graph is NP-complete. [16] Moreover, it is NP-complete to determine whether a graph is a kth power of another graph, for a given number k ≥ 2, or whether it is a kth power of a bipartite graph, for k > 2.[17]

Induced subgraphs

K4 as the half-square of a cube graph

The half-square of a bipartite graph G is the subgraph of G2 induced by one side of the bipartition of G. Map graphs are the half-squares of planar graphs,[18] and halved cube graphs are the half-squares of hypercube graphs.[19]

Leaf powers are the subgraphs of powers of trees induced by the leaves of the tree. A k-leaf power is a leaf power whose exponent is k.[20]

References

  1. ^ Bondy, Adrian; Murty, U. S. R. (2008), Graph Theory, Graduate Texts in Mathematics, vol. 244, Springer, p. 82, ISBN 9781846289699.
  2. ^ Weisstein, Eric W., "Graph Power", MathWorld
  3. ^ Todinca, Ioan (2003), "Coloring powers of graphs of bounded clique-width", Graph-theoretic concepts in computer science, Lecture Notes in Comput. Sci., vol. 2880, Springer, Berlin, pp. 370–382, doi:10.1007/978-3-540-39890-5_32, MR 2080095.
  4. ^ a b Agnarsson, Geir; Halldórsson, Magnús M. (2000), "Coloring powers of planar graphs", Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '00), San Francisco, California, USA, pp. 654–662{{citation}}: CS1 maint: location missing publisher (link).
  5. ^ Formann, M.; Hagerup, T.; Haralambides, J.; Kaufmann, M.; Leighton, F. T.; Symvonis, A.; Welzl, E.; Woeginger, G. (1993), "Drawing graphs in the plane with high resolution", SIAM Journal on Computing, 22 (5): 1035–1052, doi:10.1137/0222063, MR 1237161.
  6. ^ Kramer, Florica; Kramer, Horst (2008), "A survey on the distance-colouring of graphs", Discrete Mathematics, 308 (2–3): 422–426, doi:10.1016/j.disc.2006.11.059, MR 2378044.
  7. ^ Molloy, Michael; Salavatipour, Mohammad R. (2005), "A bound on the chromatic number of the square of a planar graph", Journal of Combinatorial Theory, Series B, 94 (2): 189–213, doi:10.1016/j.jctb.2004.12.005, hdl:1807/9473, MR 2145512.
  8. ^ Alon, Noga; Mohar, Bojan (2002), "The chromatic number of graph powers", Combinatorics, Probability and Computing, 11 (1): 1–10, doi:10.1017/S0963548301004965, MR 1888178, S2CID 2706926.
  9. ^ Agnarsson & Halldórsson (2000) list publications proving NP-hardness for general graphs by McCormick (1983) and Lin and Skiena (1995), and for planar graphs by Ramanathan and Lloyd (1992, 1993).
  10. ^ Bondy & Murty (2008), p. 105.
  11. ^ Underground, Polly (1978), "On graphs with Hamiltonian squares", Discrete Mathematics, 21 (3): 323, doi:10.1016/0012-365X(78)90164-4, MR 0522906.
  12. ^ Diestel, Reinhard (2012), "10. Hamiltonian cycles", Graph Theory (PDF) (corrected 4th electronic ed.).
  13. ^ Chan, Timothy M. (2012), "All-pairs shortest paths for unweighted undirected graphs in time", ACM Transactions on Algorithms, 8 (4): A34:1–A34:17, doi:10.1145/2344422.2344424, MR 2981912, S2CID 1212001
  14. ^ Hammack, Richard; Imrich, Wilfried; Klavžar, Sandi (2011), Handbook of Product Graphs, Discrete Mathematics and Its Applications (2nd ed.), CRC Press, p. 94, ISBN 9781439813058.
  15. ^ Chang, Maw-Shang; Ko, Ming-Tat; Lu, Hsueh-I (2015), "Linear-Time Algorithms for Tree Root Problems", Algorithmica, 71 (2): 471–495, doi:10.1007/s00453-013-9815-y, S2CID 253971732.
  16. ^ Motwani, R.; Sudan, M. (1994), "Computing roots of graphs is hard", Discrete Applied Mathematics, 54: 81–88, doi:10.1016/0166-218x(94)00023-9.
  17. ^ Le, Van Bang; Nguyen, Ngoc Tuy (2010), "Hardness results and efficient algorithms for graph powers", Graph-Theoretic Concepts in Computer Science: 35th International Workshop, WG 2009, Montpellier, France, June 24-26, 2009, Revised Papers, Lecture Notes in Computer Science, vol. 5911, Berlin: Springer, pp. 238–249, doi:10.1007/978-3-642-11409-0_21, ISBN 978-3-642-11408-3, MR 2587715.
  18. ^ Chen, Zhi-Zhong; Grigni, Michelangelo; Papadimitriou, Christos H. (2002), "Map graphs", Journal of the ACM, 49 (2): 127–138, arXiv:cs/9910013, doi:10.1145/506147.506148, MR 2147819, S2CID 2657838.
  19. ^ Shpectorov, S. V. (1993), "On scale embeddings of graphs into hypercubes", European Journal of Combinatorics, 14 (2): 117–130, doi:10.1006/eujc.1993.1016, MR 1206617.
  20. ^ Nishimura, N.; Ragde, P.; Thilikos, D.M. (2002), "On graph powers for leaf-labeled trees", Journal of Algorithms, 42: 69–108, doi:10.1006/jagm.2001.1195.

Read other articles:

Rudnei da Rosa Informasi pribadiTanggal lahir 7 Oktober 1984 (umur 39)Tempat lahir BrasilPosisi bermain GelandangKarier senior*Tahun Tim Tampil (Gol)2011 Ventforet Kofu * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Rudnei da Rosa (lahir 7 Oktober 1984) adalah pemain sepak bola asal Brasil. Karier Rudnei da Rosa pernah bermain untuk Ventforet Kofu. Pranala luar (Jepang) Profil dan statistik di situs web resmi J. League Data Site Artikel bertopik pemain sepak bola ...

 

Untuk kota Yokohama di Prefektur Aomori, lihat Yokohama, Aomori Yokohama 横浜Kota横浜市 · Kota Yokohama[1]Dari kiri atas: Minato Mirai 21, Pecinan Yokohama, Nippon Maru, Stasiun Yokohama, Menara Bahari Yokohama BenderaLambangLokasi Yokohama di KanagawaNegaraJepangRegionKantōPrefekturKanagawaPemerintahan • Wali kotaFumiko HayashiLuas • Total437,38 km2 (168,87 sq mi)Populasi (1 Oktober 2016) • Total3.732.616 • Ke...

 

Town in Klaipėda County, LithuaniaŽemaičių NaumiestisTownTown centre SealŽemaičių NaumiestisCoordinates: 55°21′30″N 21°42′0″E / 55.35833°N 21.70000°E / 55.35833; 21.70000Country LithuaniaCounty Klaipėda CountyPopulation (2011) • Total1,373Time zoneUTC+2 (EET) • Summer (DST)UTC+3 (EEST) Žemaičių Naumiestis (Polish: Nowe Miasto, Yiddish: ניישטאָט טאווריג, ניישטאָט סוגינט)[1] is ...

American basketball player (born 2001) Aliyah BostonBoston with the Indiana Fever in 2023No. 7 – Indiana FeverPositionPower forward / centerLeagueWNBAPersonal informationBorn (2001-12-11) December 11, 2001 (age 22)Saint Thomas, U.S. Virgin IslandsNationalityAmericanListed height6 ft 5 in (1.96 m)Listed weight220 lb (100 kg)Career informationHigh schoolWorcester Academy(Worcester, Massachusetts)CollegeSouth Carolina (2019–2023)WNBA draft2023: 1st round...

 

Ne doit pas être confondu avec Association syndicale. Pour l’article homonyme, voir Le Syndicat. Cet article est une ébauche concernant le syndicalisme. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Hôtel du syndicat des verriers à Aniche dans le Nord (photographie du début du XXe siècle). Un syndicat est un groupement de personnes physiques ou morales pour la défense ou la gestion d'intérêts c...

 

Human settlement in EnglandAveningAveningLocation within GloucestershirePopulation1,031 (2011 Census)DistrictCotswoldShire countyGloucestershireRegionSouth WestCountryEnglandSovereign stateUnited KingdomPost townTetburyPostcode districtGL8PoliceGloucestershireFireGloucestershireAmbulanceSouth Western UK ParliamentThe Cotswolds List of places UK England Gloucestershire 51°41′N 2°10′W / 51.683°N 2.167°W / 51.683; -2.167 Avening (/ˈeɪvn�...

BIM beralih ke halaman ini. Untuk kegunaan lain, lihat Bim (disambiguasi). Pemodelan informasi bangunan dari sebuah ruang mekanis yang dikembangkan menggunakan data lidar Pemodelan informasi bangunan (bahasa Inggris: building information modeling, disingkat BIM) adalah sebuah proses yang digunakan untuk membuat dan mengelola gambaran digital dari ciri fisik dan fungsional sebuah bangunan. Proses ini melibatkan berbagai alat, teknologi, dan kontrak supaya dapat mencapai tujuannya. BIM beru...

 

SH3BP4 المعرفات الأسماء المستعارة SH3BP4, BOG25, TTP, SH3 domain binding protein 4 معرفات خارجية الوراثة المندلية البشرية عبر الإنترنت 605611 MGI: MGI:2138297 HomoloGene: 8726 GeneCards: 23677 علم الوجود الجيني الوظيفة الجزيئية • ‏GO:0001948، ‏GO:0016582 ربط بروتيني• identical protein binding• GDP-dissociation inhibitor activity المكونات الخلوية • سيتو�...

 

Сурожская епархия Diocese of Sourozh Собор Успения Божией Матери и Всех Святых в Лондоне Страна  Великобритания Ирландия Церковь Русская православная церковь Митрополия Патриарший экзархат Западной Европы Дата основания 10 октября 1962 года Управление Главный город Лондон ...

金正男遇刺现场,位于吉隆坡第二国际机场 金正男遇刺事件,是2017年2月13日已故朝鮮勞動黨總書記金正日的長子,也是現任領導人金正恩的兄長金正男於吉隆坡第二国际机场被2名女子刺殺身亡的事件。 事件经过 2017年2月6日,一名持姓名为「金哲」的朝鲜民主主义人民共和国外交护照的男子搭機抵达马来西亚,在2月8日前往浮羅交怡並在浮羅交怡威斯汀酒店(The Westin Langkaw...

 

  提示:此条目页的主题不是中華人民共和國最高領導人。 中华人民共和国 中华人民共和国政府与政治系列条目 执政党 中国共产党 党章、党旗党徽 主要负责人、领导核心 领导集体、民主集中制 意识形态、组织 以习近平同志为核心的党中央 两个维护、两个确立 全国代表大会 (二十大) 中央委员会 (二十届) 总书记:习近平 中央政治局 常务委员会 中央书记处 �...

 

Wangsa Mataramꦮꦁꦯꦩꦠꦫꦴꦩ꧀NegaraMataram, Surakarta, Yogyakarta, Mangkunagaran, PakualamanKelompok etnisJawaDidirikan1586PendiriPanembahan SenapatiKepala saat ini Sri Susuhunan Pakubuwana XIII (Surakarta) Sri Sultan Hamengkubuwana X (Yogyakarta) KGPAA. Mangkunagara X (Mangkunagaran) KGPAA. Paku Alam X (Pakualaman)GelarPanembahanSusuhunanSultanAdipatiGelar sapaanSinuhun (sebutan untuk baginda)Nandalem (sebutan baginda dalam Krama Inggil)Sahandhap Dalem (Surakarta)Ngarsa Dalem (Yo...

Overview of the role of the United States Navy during World War II Main articles: Naval history of World War II, Military history of the United States during World War II, History of United States Naval Operations in World War II (series), and Pacific War The surrender of Japan to Allied forces on the USS Missouri on September 2, 1945 The United States Navy grew rapidly during its involvement in World War II from 1941–45, and played a central role in the Pacific War against Imperial Ja...

 

هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (أكتوبر 2021) يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه الم...

 

Australian long and triple jumper Basil DickinsonPersonal informationBorn25 April 1915Queanbeyan, New South Wales, AustraliaDied7 October 2013 (aged 98)Queanbeyan, New South Wales, AustraliaSportSportAthleticsEvent(s)Triple jump, long jumpAchievements and titlesPersonal bestTJ – 15.64 m (1935)[1] Medal record Representing  Australia British Empire Games 1938 Sydney Long jump 1938 Sydney Triple jump John Basil Charles Dickinson (25 April 1915 – 7 October 2013)[2] was a...

دوري الدرجة الأولى الروماني 1956 تفاصيل الموسم دوري الدرجة الأولى الروماني  النسخة 39  البلد رومانيا  التاريخ بداية:18 مارس 1956  نهاية:18 نوفمبر 1956  المنظم اتحاد رومانيا لكرة القدم  البطل نادي ستيوا بوخارست  الهابطون طمشوار 1933  [لغات أخرى]‏،  وجامعة ك�...

 

Framnæs shipyard (Framnæs mekaniske Værksted) was a former Norwegian shipbuilding and engineering firm headquartered in Sandefjord, in Vestfold county, Norway. Originally strongly linked to the whaling industry, in later years it entered into more versatile shipbuilding, including rigs and modules for the offshore business. It was incorporated in 1898 and was closed down in 1986. History Framnæs mekaniske Værksted A/S Framnæs mek Værksted has its origins from three earlier shipyards. C...

 

肝炎 アルコール性肝炎概要診療科 消化器学, 肝臓学, 感染症内科学, 内科学, 家庭医療分類および外部参照情報ICD-10 K75.9ICD-9-CM 573.3DiseasesDB 20061MeSH D006505 [ウィキデータで編集] 肝炎(かんえん、英語:Hepatitis)は、何らかの原因で肝臓に炎症が起こり発熱、黄疸、全身倦怠感などの症状を来たす疾患の総称である。 原因 肝炎の主な原因には以下が存在する。 ウイル�...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2019) أرتور نونيز خيمينيز (بالإسبانية: Arturo Núñez Jiménez)‏    معلومات شخصية الميلاد 23 يناير 1948 (76 سنة)  فيلاهيرموسا  مواطنة المكسيك  مناصب [1]   في المنص�...

 

Mechanical device which stores energy This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (December 2007) (Learn how and when to remove this message) A tension coil spring A coil spring is a mechanical device which is typically used to store energy and subsequently release it, to absorb shock, or to maintain a force between contacting surfaces. They are made of an...