Gliotoxin is a sulfur-containingmycotoxin that belongs to a class of naturally occurring 2,5-diketopiperazines[1] produced by several species of fungi, especially those of marine origin. It is the most prominent member of the epipolythiopiperazines, a large class of natural products featuring a diketopiperazine with di- or polysulfide linkage. These highly bioactive compounds have been the subject of numerous studies aimed at new therapeutics.[2] Gliotoxin was originally isolated from Gliocladium fimbriatum, and was named accordingly. It is an epipolythiodioxopiperazine metabolite that is one of the most abundantly produced metabolites in human invasive Aspergillosis (IA).[3]
Occurrence
The compound is produced by human pathogens such as Aspergillus fumigatus,[4] and also by species of Trichoderma and Penicillium. Gliotoxin has also been reported from yeasts of the genus Candida,[5] but results from other studies have cast doubt on the production of this metabolite by Candida fungi.[6][7] Gliotoxin is not produced by nonpathogenic A. fischeri although A.fischeri contains a gene cluster that is homologous to the gliotoxin gene cluster found in the pathogenic A. fumigatus.[8] Gliotoxin contributes to the pathogenicity of opportunistic fungi by suppressing the immune system response of its host.[9] Gliotoxin additionally possesses fungicidal and bacteriostatic properties, which indicates that it likely plays an important self defense role against bacteria and other fungi for the fungi that produce gliotoxin.[10] Exposure of A. fumigatus to exogenous gliotoxin resulted in aberrant protein expression, especially in those strains that lacked the self-protection protein GliT.[11] There is additional evidence for differential gliotoxin sensitivities amongst fungi including Aspergillus flavus, Fusarium graminearum, and Aspergillus oryzae.[11]
Discovery
Gliotoxin was first described in 1936 by Weindling and Emerson as a metabolic product from the fungus Trichoderma lignorum. However, afterwards Weindling reported that the fungus had been misidentified based on the advice of C. Thom and M. Timonin, and that the compound instead was isolated from Gliocladium finbriatum.[12] Contention remains on whether the fungus used by Weindling was G. finbriatum or a species of Trichoderma.[12] The chemical structure of gliotoxin was resolved in 1958 by Bell et al. by treatment of gliotoxin on alkaline alumina.[13] Bell and colleagues were able to determine through their structural analyses that the attachment of the disulfide bridge could not occur at any positions other than 3 and 11. This led to the elucidation that gliotoxin was an anhydropeptide related to the amino acids serine and phenylalanine. Additionally, they found that it was noteworthy that the α-carbon atoms of the cooperating α-thio-α-amino acids must have the same configuration.[13]
The immunosuppressive properties of gliotoxin are due to the disulfide bridge within its structure. Interactions occur between sulfur molecules that make up the disulfide bridge and thiol groups contained in cysteine residues. Gliotoxin acts by blocking thiol residues in the cell membrane.[14] Gliotoxin also activates a member of the Bcl-2 family called Bak in order to mediate cell apoptosis. Activated Bak then causes the release of ROS, which form pores within the mitochondrial membrane. These pores allow the release of cytochrome C and AIF, which initiate apoptosis within the cell.[16]
Biosynthesis
In Aspergillus fumigatus, the enzymes needed for gliotoxin biosynthesis are encoded in 13 genes within the gli gene cluster. When this gene cluster is activated, these enzymes mediate the production of gliotoxin from serine and phenylalanine residues.[17] The function of some genes contained within the gli gene cluster remain to be elucidated.[18]
Enzymes Involved in Biosynthesis (in order of activity)[17][18]
GliN/GliM: N-methyltransferase/O-methyltransferase that adds a methyl group to nitrogen to form the dithiol gliotoxin intermediate utilizing s-adenosyl methionine (SAM) in the reaction
The exact roles of the enzymes GliC, GliF, GliM, and GliN and the steps in the biosynthetic pathway of these enzymes are still not completely understood in the biosynthesis of gliotoxin.[18]
Regulation of Biosynthesis
Some gliotoxin molecules are not secreted by GliA and remain in the cell. This intracellular gliotoxin activates the transcription factor GliZ, facilitating gligene cluster expression, and an enzyme called GtmA (S-adenosylmethionine (SAM)-dependent bis-thiomethyltransferase). GtmA acts as a negative regulator for gliotoxin biosynthesis by adding methyl groups to the two sulfur residues on the dithiol gliotoxin intermediate to form bisdethilobis(methylthio)-gliotoxin (BmGT).[18] These additions prevent the formation of the disulfide bridge by GliT, inhibiting gliotoxin formation, while BmGT is significantly less toxic than gliotoxin.[17][18]
It is thought that GliA, GtmA, and GliT provide mechanisms for self-protection against gliotoxin toxicity for the fungi that produce and excrete gliotoxin.[18] GliA is a transporter involved in the secretion of gliotoxin, and it has been found that depletion of the GliA protein would result in cell death in A. fumigatus and significantly increase A. fumigatus sensitivity to gliotoxin.[18] GtmA catalyzes the addition of methyl groups to the sulfur residues of dithiol gliotoxin to form nontoxic BmGT, which reduces the toxicity load on the fungi while also downregulating further expression of the gli cluster and attenuating gliotoxin biosynthesis.[17] GliT is required for the formation of the disulfide bridge to create active gliotoxin, but it is also suggested that it plays a role in self-protection against gliotoxin toxicity. In A. fumigatus with the deletion of the GliT gene, there was found to be an accumulation of dithiol gliotoxin, which contributed to hypersensitivity to exogenous gliotoxin. These regulatory controls on the biosynthesis of gliotoxin are thought to provide mechanisms for novel strategies of gliotoxin toxicity prevention.[18]
Chemical synthesis
The first total synthesis of gliotoxin was achieved by Fukuyama and Kishi in 1976.[19] Gliotoxin contains a total of four asymmetric centers along with two ring systems—hydrated benzene and epidithiapiperazinedione. Fukuyama and Kishi first synthesized the thioacetal1 from glycine sarcosine anhydride via a six-step synthesis with an overall 30% yield.[19] A Michael reaction of 4-carbo-tert-butoxybenzene oxide 2 in excess in a solvent of dimethyl sulfoxide (DMSO) containing Triton B at room temperature produced the alcohol 3 in 88% overall yield. It is expected that there would be a trans-opening of the epoxide ring for 2, so the resulting epimers would differ in the relative configuration of the thioacetal bridge and the alcoholic group depending on the orientation of compounds 1 and 2 in the transition state. It was theorized that the orientation of 1 and 2 that produced the alcohol 3 would be unfavorable in non-polar solvents. Thus, desired stereochemistry was assigned to the alcohol 3, and this compound was used in the further synthesis.
The alcohol 3 was then converted into the acetate4 via acetic anhydride-pyridine at room temperature with an overall yield of 90%. The acetate was then converted to the hydroxymethyl derivative 5 in three steps (1. TFA/room temperature; 2. ClCO2Et/Et3N-CH2Cl2/room temperature; 3. NaBH4/CH3OH-CH2Cl2/0 °C. Mesylation of 5 (MsCl/CH3OH-Et3N-CH2Cl2/0 °C), followed by lithium chloride treatment in DMF and hydrolysis (NaOCH3/CH3OH-CH2Cl2/room temperature) give the chloride 6 at a 95% overall yield. Adding phenyllithium slowly to a mixture of 6 and chloromethyl benzyl ether in excess in THF at 78 °C gave the benzylgliotoxin adduct 7 at 45% yield. Next, boron trichloride treatment of 7 in in methylene chloride at 0 °C yielded the gliotoxin anisaldehyde adduct 8 at 50% yield. Finally, acid oxidation of 8 followed by perchloric acid treatment in methylene chloride at room temperature yielded d,l-gliotoxin in a 65% yield. Spectroscopic analysis (NMR, ir, uv, MS) and TLC comparison showed that the synthetic substance was identical to natural gliotoxin.
Exposure and health effects
Environmental exposure
Exposure to fungal species that secrete gliotoxin is common because airborne Aspergillus fungal spores are ubiquitous in many environments. Regular environmental exposure does not typically cause illness, but can cause serious infections in immunosuppressed individuals or those with chronic respiratory illnesses. Infection caused by Aspergillus fungus is called aspergillosis. There are many types of aspergillosis, but infections typically affect the lungs or the sinuses.[20]
Gliotoxin is hypothesized to be an important virulence factor in Aspergillus fumigatus.[17] Experiments have demonstrated that gliotoxin is isolated in the highest concentrations from Aspergillus fumigatus in comparison to other Aspergillus species. This species of fungi is the most common cause of aspergillosis in humans. Gliotoxin is also the only toxin that has been isolated from the sera of patients with invasive aspergillosis. These results suggest a link between gliotoxin secretion and fungal pathogenicity.[21]
While not enough data exists to definitively tie chronic gliotoxin exposure to the development of cancer, chronic exposure to other immunosuppressive agents has been linked to the development of lymphomas and mammary tumors. Individuals taking immunosuppressive medications or with previous or current exposure to chemotherapy radiation are at higher risk for the development of these tumors.[22]
Clinical exposure
Gliotoxin is toxic if swallowed or inhaled, and can cause skin and eye irritation if exposure occurs to these areas. The oral LD50 of gliotoxin is 67 mg/kg. Acute symptoms of gliotoxin start rapidly after ingestion.[22]
Strategies for toxicity prevention
Understanding the mechanisms behind the toxicity of gliotoxin can open new possibilities for the use of gliotoxin therapeutically or as a diagnostic test for some conditions.[18] One potential strategy that has been explored to reduce the toxicity of the fungi that produce gliotoxin is to target the gli gene cluster that controls the expression of gliotoxin protein.[18] The disulfide bridge of gliotoxin is crucial to its toxicity, so it is theorized that the tailoring of enzymes to prevent the disulfide bridge closure by interfering with GliT or by catalyzing another reaction to block the sulfur residues may be beneficial in reducing the toxicity of those fungi.[18] Another potential strategy is the targeting of the transcriptional activator GliZ, as deletion of the GliZ resulted in abrogated gliotoxin biosynthesis.[17] This leads to the possible targeting of GliZ itself rather than any gene-based methodology to prevent it from binding to the gli gene cluster and activate transcription of the genes required for gliotoxin biosynthesis.[18] One possible strategy for disrupting the regulation of gliotoxin transport is depleting the amount of GipA in the cell.[18] GipA is a transcriptional regulator for the expression of the GliA transporter protein, which is required for gliotoxin secretion.[18] These biosynthetic strategies for reducing the toxicity of pathogenic fungal strains that produce gliotoxin are still in their early stages of exploration but could provide novel methodologies for the adoption of therapeutic uses for gliotoxin.[18]
Possible uses
While gliotoxin exposure at high concentrations shows cytotoxic effects via a multitude of different pathways, low-dose gliotoxin has been shown to have beneficial biological functions.[18] Low-dose gliotoxin can exert antioxidant activities in the presence of the thioredoxin redox system that can counter the release of ROS in cells as a result of the electron transport chain (ETC) during cellular respiration.[17][18] Moderate doses of gliotoxin have also been found to exhibit an anti-inflammatory effect in vivo due to the suppression of NF-κB activity by gliotoxin.[18] Doses of gliotoxin less than 40 nM can also activate latent HIV-1 gene expression, serving as a diagnostic of HIV infection.[18] Gliotoxin can activate HIV-1 expression by targeting (LARP7), which results in the release of active P-TEFb and the positive regulation of transcription of HIV proteins. Treatment of 20 nM gliotoxin reversed HIV-1 latency without interfering in the activation of CD4+ or CD8+T-cells that are involved in the elimination of HIV-infected cells.[18] While research on this possible gliotoxin use is in early stages, this provides a possible future direction for HIV diagnosis and treatment.[18]
References
^Borthwick AD (2012). "2,5-Diketopiperazines: Synthesis, Reactions, Medicinal Chemistry, and Bioactive Natural Products". Chemical Reviews. 112 (7): 3641–3716. doi:10.1021/cr200398y. PMID22575049.
^Jiang CS, Muller WE, Schroder HC, Guo YW (2012). "Disulfide- and Multisulfide-Containing Metabolites from Marine Organisms". Chem. Rev. 112 (4): 2179–2207. doi:10.1021/cr200173z. PMID22176580.
^Scharf DH, Heinekamp T, Remme N, Hortschansky P, Brakhage AA, Hertweck C (2012). "Biosynthesis and function of gliotoxin in Aspergillus fumigatus". Appl Microbiol Biotechnol. 93 (2): 467–72. doi:10.1007/s00253-011-3689-1. PMID22094977. S2CID689907.
Schweizer M, Richter C (1994). "Gliotoxin Stimulates Ca2+ Release from Intact Rat Liver Mitochondria". Biochemistry. 33 (45): 13401–13405. doi:10.1021/bi00249a028. PMID7524661.
Puri A, Ahmad A, Panda BP (2009). "Development of an HPTLC-based diagnostic method for invasive aspergillosis". Biomedical Chromatography. 24 (8): 887–92. doi:10.1002/bmc.1382. PMID20033890.
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Ki Empu Sungkowo Harumbrodjo merupakan keturunan ke-17 dari salah satu empu majapahit yang bernama Empu Tumenggung Supodriyo. Ia merupakan seorang pembuat keris. Kerahliannya membuat keris terasah sejak ia membatu ayahnya, Epu Djeno Harumbrodjo pada 19...
American lawyer (born 1948) Menachem Z. RosensaftBorn (1948-05-01) May 1, 1948 (age 75)Bergen-Belsen, GermanyNationalityAmericanOccupationLawyerSpouseJean Bloch Rosensaft Menachem Z. Rosensaft (born 1948) is an attorney in New York and the founding chairman of the International Network of Children of Jewish Holocaust Survivors.[1] He has been described on the front page of The New York Times as one of the most prominent of the survivors' sons and daughters.[2] He has serv...
Bilateral relations Bilateral relationsFrance–United Kingdom relations United Kingdom France Diplomatic missionEmbassy of the United Kingdom, ParisEmbassy of France, LondonEnvoyAmbassador Menna RawlingsAmbassador Hélène Tréheux-Duchêne Map including French and British overseas territories. Maritime borders between the two countries, in Europe, the Caribbean, and the Pacific Ocean. The historical ties between France and the United Kingdom, and the countries preceding them, are long and c...
Radio station in Manchester, New HampshireWGIRManchester, New HampshireBroadcast areaSouthern New HampshireFrequency610 kHzBrandingNews Radio 610 WGIRProgrammingFormatNews/talkAffiliationsFox News RadioCompass Media NetworksPremiere NetworksNew Hampshire Fisher CatsOwnershipOwneriHeartMedia(iHM Licenses, LLC)Sister stationsWGIR-FMHistoryFirst air dateOctober 2, 1941Former call signsWMUR (1941–1956)Call sign meaningGirolimon family (former owner)Technical informationFacility ID35237ClassBPow...
2003 Charlotte mayoral election← 20012005 → Nominee Pat McCrory Craig Madans Party Republican Democratic Popular vote 44,123 31,101 Percentage 56.51% 39.83% Mayor before election Pat McCrory Republican Elected Mayor Pat McCrory Republican Elections in North Carolina Federal government U.S. President 1792 1796 1800 1804 1808 1812 1816 1820 1824 1828 1832 1836 1840 1844 1848 1852 1856 1860 1868 1872 1876 1880 1884 1888 1892 1896 1900 1904 1908 1912 1916 1920 1...
Delaware Valley Regional Planning CommissionThe DVPRC logoMetropolitan planning organization overviewFormed1965 (1965)Headquarters190 N Independence Mall West, 8th Floor, Philadelphia, Pennsylvania, U.S.Websitewww.dvrpc.orgMapA map of the nine counties in southeastern Pennsylvania and South Jersey covered by DVRPC The Delaware Valley Regional Planning Commission (DVRPC) is the metropolitan planning organization for the Delaware Valley. Created in 1965 by an interstate compact, DVRPC is r...
Untuk kegunaan lain, lihat BTV. Artikel ini bukan mengenai B-Channel atau Biznet Home. BeritaSatu beralih ke halaman ini. Untuk media lain bermerek sama yang segrup, lihat B Universe § Media. BTVNama sebelumnyaQ Channel (1998-2005)QTV (2005-2011)BeritaSatu (2011-2022)JenisJaringan televisiSloganBersatu MenginspirasiNegaraIndonesiaBahasaBahasa IndonesiaPendiriPeter F. GonthaTanggal siaran perdana1 Mei 1998 (siaran percobaan)Tanggal peluncuran29 Mei 1998 (sebagai Q Channel)15 Septem...
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Rai 1 – news · newspapers · books · scholar · JSTOR (October 2013) (Learn how and when to remove this templ...
Combined Statistical Area in Wisconsin, United StatesFox CitiesCombined Statistical AreaDowntown Appleton skyline, facing eastMap of Appleton–Oshkosh–Neenah, WI CSA Appleton, WI MSA Oshkosh–Neenah, WI MSA City of Appleton City of Oskhosh City of Neenah Country United StatesState WisconsinLargest cityAppletonOther cities Oshkosh Neenah Time zoneUTC−06:00 (CST) • Summer (DST)UTC−05:00 (CDT) The Fox Cities of...
National anthem of Zambia Stand and Sing of Zambia, Proud and FreeNational anthem of ZambiaAlso known as(English: Stand and Sing of Zambia, Proud and Free)LyricsG. Ellis, E.S. Musonda, J.M.S. Lichilana, I. Lowe, J. Sajiwandani, and R.J. Seal, 1973 (1973)MusicEnoch Sontonga, 1897 (1897)Adopted14 September 1973; 50 years ago (1973-09-14)Preceded byNkosi Sikelel' iAfrikaAudio sampleInstrumental versionfilehelp Stand and Sing of Zambia, Proud and Free is the...
Cet article possède un paronyme, voir Le Thuit. Pour les articles homonymes, voir Thil. Cet article est une ébauche concernant une commune de l’Eure. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Le bandeau {{ébauche}} peut être enlevé et l’article évalué comme étant au stade « Bon début » quand il comporte assez de renseignements encyclopédiques concernant la commune. Si vous avez un doute, l’atelier de lecture du projet Communes de ...
Disambiguazione – Batman Beyond rimanda qui. Se stai cercando la serie a fumetti, vedi Batman Beyond (fumetto). Batman of the Futureserie TV d'animazione Terry McGinnis nella sigla della serie Titolo orig.Batman Beyond Lingua orig.inglese PaeseStati Uniti AutoreBruce Timm, Paul Dini, Alan Burnett RegiaButch Lukic, Dan Riba ProduttoreAlan Burnett, Paul Dini, Glen Murakami, Bruce Timm, Jean MacCurdy (produttore esecutivo), Shaun McLau...
Nicola Fabrizi Deputato del Regno d'ItaliaLegislaturaVIII, IX, X, XI, XII, XIII, XIV, XV legislatura del Regno d'Italia CollegioTrapani (VIII-X), Modena (XI-XV) Sito istituzionale Dati generaliPartito politicoSinistra storica ProfessioneMilitare Nicolò Fabrizi, detto Nicola (Modena, 4 aprile 1804 – Roma, 31 marzo 1885), è stato un militare, patriota e politico italiano. Indice 1 Biografia 1.1 Le rivolte in Sicilia 1.2 Con Garibaldi 1.3 Deputato del Regno 2 Il monumento a lui dedicato...
2013 film by Shambu Purushothaman This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: colloquialism, encyclopaedic style. Please help improve this article if you can. (December 2013) (Learn how and when to remove this message) VedivazhipaduTheatrical posterDirected byShambhu PurushothamanWritten byShambhu PurushothamanProduced byArun Kumar AravindStarringIndrajith SukumaranMurali GopySaiju KurupAnumolMythiliCinematographyShehnad JalalEdited byPreji...
1996 US drama film by Billy Bob Thornton This article is about the 1996 film. For the tool, see Sling blade. Sling BladeTheatrical release posterDirected byBilly Bob ThorntonScreenplay byBilly Bob ThorntonBased onSome Folks Call It a Sling Blade by Billy Bob ThorntonProduced byLarry Meistrich David L. Bushell Brandon RosserStarring Billy Bob Thornton Dwight Yoakam J. T. Walsh John Ritter Lucas Black Natalie Canerday Robert Duvall CinematographyBarry MarkowitzEdited byHughes WinborneMusic byDa...
Filipino bread Pan de monjaAlternative namesmonay, pan de monayTypeBread rollPlace of originPhilippines Media: Pan de monja Monay, also known as pan de monja, is a dense bread roll from the Philippines made with all-purpose flour, milk, and salt. It has a characteristic shape, with an indentation down the middle dividing the bread into two round halves. It is a common humble fare, usually eaten for merienda with cheese or dipped in hot drinks.[1][2] It is one of the ...