Gibbs–Duhem equation

Josiah Willard Gibbs
Josiah Willard Gibbs

In thermodynamics, the Gibbs–Duhem equation describes the relationship between changes in chemical potential for components in a thermodynamic system:[1]

where is the number of moles of component the infinitesimal increase in chemical potential for this component, the entropy, the absolute temperature, volume and the pressure. is the number of different components in the system. This equation shows that in thermodynamics intensive properties are not independent but related, making it a mathematical statement of the state postulate. When pressure and temperature are variable, only of components have independent values for chemical potential and Gibbs' phase rule follows. The Gibbs−Duhem equation cannot be used for small thermodynamic systems due to the influence of surface effects and other microscopic phenomena.[2]

The equation is named after Josiah Willard Gibbs and Pierre Duhem.

Derivation

Deriving the Gibbs–Duhem equation from the fundamental thermodynamic equation is straightforward.[3] The total differential of the extensive Gibbs free energy in terms of its natural variables is

Since the Gibbs free energy is the Legendre transformation of the internal energy, the derivatives can be replaced by their definitions, transforming the above equation into:[4]

The chemical potential is simply another name for the partial molar Gibbs free energy (or the partial Gibbs free energy, depending on whether N is in units of moles or particles). Thus the Gibbs free energy of a system can be calculated by collecting moles together carefully at a specified T, P and at a constant molar ratio composition (so that the chemical potential does not change as the moles are added together), i.e.

.

The total differential of this expression is[4]

Combining the two expressions for the total differential of the Gibbs free energy gives

which simplifies to the Gibbs–Duhem relation:[4]

Alternative derivation

Another way of deriving the Gibbs–Duhem equation can be found by taking the extensivity of energy into account. Extensivity implies that

where denotes all extensive variables of the internal energy . The internal energy is thus a first-order homogenous function. Applying Euler's homogeneous function theorem, one finds the following relation when taking only volume, number of particles, and entropy as extensive variables:

Taking the total differential, one finds

Finally, one can equate this expression to the definition of to find the Gibbs–Duhem equation

Applications

By normalizing the above equation by the extent of a system, such as the total number of moles, the Gibbs–Duhem equation provides a relationship between the intensive variables of the system. For a simple system with different components, there will be independent parameters or "degrees of freedom". For example, if we know a gas cylinder filled with pure nitrogen is at room temperature (298 K) and 25 MPa, we can determine the fluid density (258 kg/m3), enthalpy (272 kJ/kg), entropy (5.07 kJ/kg⋅K) or any other intensive thermodynamic variable.[5] If instead the cylinder contains a nitrogen/oxygen mixture, we require an additional piece of information, usually the ratio of oxygen-to-nitrogen.

If multiple phases of matter are present, the chemical potentials across a phase boundary are equal.[6] Combining expressions for the Gibbs–Duhem equation in each phase and assuming systematic equilibrium (i.e. that the temperature and pressure is constant throughout the system), we recover the Gibbs' phase rule.

One particularly useful expression arises when considering binary solutions.[7] At constant P (isobaric) and T (isothermal) it becomes:

or, normalizing by total number of moles in the system substituting in the definition of activity coefficient and using the identity :

[8]

This equation is instrumental in the calculation of thermodynamically consistent and thus more accurate expressions for the vapor pressure of a fluid mixture from limited experimental data.

Ternary and multicomponent solutions and mixtures

Lawrence Stamper Darken has shown that the Gibbs–Duhem equation can be applied to the determination of chemical potentials of components from a multicomponent system from experimental data regarding the chemical potential of only one component (here component 2) at all compositions. He has deduced the following relation[9]

xi, amount (mole) fractions of components.

Making some rearrangements and dividing by (1 – x2)2 gives:

or

or

as formatting variant

The derivative with respect to one mole fraction x2 is taken at constant ratios of amounts (and therefore of mole fractions) of the other components of the solution representable in a diagram like ternary plot.

The last equality can be integrated from to gives:

Applying LHopital's rule gives:

.

This becomes further:

.

Express the mole fractions of component 1 and 3 as functions of component 2 mole fraction and binary mole ratios:

and the sum of partial molar quantities

gives

and are constants which can be determined from the binary systems 1_2 and 2_3. These constants can be obtained from the previous equality by putting the complementary mole fraction x3 = 0 for x1 and vice versa.

Thus

and

The final expression is given by substitution of these constants into the previous equation:

See also

References

  1. ^ A to Z of Thermodynamics Pierre Perrot ISBN 0-19-856556-9
  2. ^ Stephenson, J. (1974). "Fluctuations in Particle Number in a Grand Canonical Ensemble of Small Systems". American Journal of Physics. 42 (6): 478–481. doi:10.1119/1.1987755.
  3. ^ Fundamentals of Engineering Thermodynamics, 3rd Edition Michael J. Moran and Howard N. Shapiro, p. 538 ISBN 0-471-07681-3
  4. ^ a b c Salzman, William R. (2001-08-21). "Open Systems". Chemical Thermodynamics. University of Arizona. Archived from the original on 2007-07-07. Retrieved 2007-10-11.
  5. ^ Calculated using REFPROP: NIST Standard Reference Database 23, Version 8.0
  6. ^ Fundamentals of Engineering Thermodynamics, 3rd Edition Michael J. Moran and Howard N. Shapiro, p. 710 ISBN 0-471-07681-3
  7. ^ The Properties of Gases and Liquids, 5th Edition Poling, Prausnitz and O'Connell, p. 8.13, ISBN 0-07-011682-2
  8. ^ Chemical Thermodynamics of Materials, 2004 Svein Stølen, p. 79, ISBN 0-471-49230-2
  9. ^ Darken, L. S (1950). "Application of the Gibbs-Duhem Equation to Ternary and Multicomponent Systems". Journal of the American Chemical Society. 72 (7): 2909–2914. doi:10.1021/ja01163a030.

Read other articles:

Iiwake MaybeSampul edisi regulerSingel oleh AKB48dari album KamikyokutachiSisi-BTobenai AgehachōDirilis26 Agustus 2009 (2009-08-26) (Jepang)FormatCD SingelGenreJ-popDurasi15:49LabelYou! Be Cool/King RecordsPenciptaYasushi Akimoto, ShunryūProduserYasushi AkimotoVideo musikIiwake Maybe di YouTube Video musikTobenai Agehachō / Under Girls Iiwake Maybe (言い訳Maybecode: ja is deprecated , Alasan, Mungkin) adalah singel ke-13 dari grup idola Jepang AKB48 yang dirilis pada 26 Agustus 200...

 

Untuk universitas Amerika, lihat Universitas Wittenberg. Universitas Martin Luther Halle-WittenbergMartin-Luther-Universität Halle-WittenbergLatin: Universitas hallensiscode: la is deprecated MotoZukunft mit TraditionMoto dalam bahasa InggrisMasa Depan dengan TradisiJenisUniversitas negeriDidirikan1502RektorChristian Tietje [de]Staf administrasi5,017 (335 diantaranya adalah profesor universitas yang menjabat)Jumlah mahasiswa20,672 (pada 2012)LokasiHalle, Saxony-Anhalt, Jerm...

 

العلاقات الأوزبكستانية البولندية أوزبكستان بولندا   أوزبكستان   بولندا تعديل مصدري - تعديل   العلاقات الأوزبكستانية البولندية هي العلاقات الثنائية التي تجمع بين أوزبكستان وبولندا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للد�...

Alaksandar Milinkievič Alaksandar Milinkievič Alaksandar Milinkievič (juga dieja Alexander Milinkevich, bahasa Belarus: Аляксандар Мілінкевіч; lahir pada 25 Juli 1947 di Hrodna) adalah seorang politikus Belarus. Berlatar belakang pendidikan dalam bidang fisika, Milinkievič dari tahun 1978 hingga 1980 dan 1984 hingga 1990 bekerja sebagai dosen di Universitas Hrodna. Milinkievič juga pernah menjadi wakil wali kota Hrodna. Pada Oktober 2005 ia dicalonkan sebagai presiden...

 

Schneider Electric S.A.Kantor pusat Schneider Electric di ParisJenisS.A. (corporation)Kode emitenEuronext: SUIndustriPeralatan ElektrikDidirikan1836, incorporated 1981KantorpusatRueil-Malmaison, PrancisWilayah operasiSeluruh duniaTokohkunciJean-Pascal Tricoire (President dan CEO),ProdukPLC, sensor, variable-frequency drive, uninterruptible power supplies, circuit breaker, switchgear, switchboard, motor controllerPendapatan€19.58 miliar (2010)[1]Laba operasi€2,703 miliar (2010...

 

Pour les articles homonymes, voir Commission de la santé. Commission de la santé et de la sécurité du travail Logo. Création 1979 Disparition 1er janvier 2016 Juridiction Gouvernement du Québec Commission des normes, de l'équité, de la santé et de la sécurité du travail modifier  Logo de l'IVAC La Commission de la santé et de la sécurité du travail (CSST) est un ancien organisme gouvernemental québécois créé en 1979 pour administrer certains programmes d'indemnisation ...

Pour les articles homonymes, voir Bataille de Smolensk. Bataille de Smolensk La bataille de Smolensk par Piter von Hess. Informations générales Date 16-17 août 1812 Lieu Smolensk Issue Victoire française Belligérants Empire français Empire russe Commandants Napoléon Ier Pierre de Bagration Forces en présence 175 000 hommes 130 000 hommes Pertes 700 morts 3 100 à 3 200 blessés 4 700 morts 7 000 à 8 000 blessés 2...

 

Pakistani cricketer Not to be confused with Mohammad Hanif. PPHanif MohammadPersonal informationFull nameHanif MohammadBorn(1934-12-21)21 December 1934Junagadh, Junagadh State, British IndiaDied11 August 2016(2016-08-11) (aged 81)Karachi, Sindh, PakistanNicknameLittle MasterHeight5 ft 7 in (1.70 m)BattingRight-handedBowlingRight-arm off breakRoleBatsmanRelationsWazir Mohammad (brother)Raees Mohammad (brother)Mushtaq Mohammad (brother)Sadiq Mohammad (brother) Shoaib Mo...

 

Medieval European play For the graphic novella, see The Mystery Play. Depiction of a performance of the Mystery Play of Saint Clement in Metz during the Middle Ages. Mystery plays and miracle plays (they are distinguished as two different forms although the terms are often used interchangeably[1]) are among the earliest formally developed plays in medieval Europe. Medieval mystery plays focused on the representation of Bible stories in churches as tableaux with accompanying antiphonal...

Chronologies Données clés 1890 1891 1892  1893  1894 1895 1896Décennies :1860 1870 1880  1890  1900 1910 1920Siècles :XVIIe XVIIIe  XIXe  XXe XXIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, Cameroun, Cap-Vert, République centrafricaine, Comores, République du Congo, République démocratique du Congo, Côte d'Ivoire, Djibouti, Égyp...

 

Pour les articles homonymes, voir Béatrice du Royaume-Uni. Béatrice du Royaume-Uni La princesse Béatrice en 1926 Fonctions Gouverneur de l'île de Wight 1896 – 1944 (48 ans) Monarque VictoriaÉdouard VIIGeorge VÉdouard VIIIGeorge VI Prédécesseur Henri de Battenberg Successeur Gerald Wellesley,duc de Wellington Biographie Dynastie Maison de Saxe-Cobourg-Gotha/ Maison de Windsor Date de naissance 14 avril 1857 Lieu de naissance Palais de Buckingham, Londres, Angleterre, Royaume-Uni Dat...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

 

عَبدُ اَلرَّحْمَن بنَ مُعاوِيَة عَبدُ اَلرَّحْمَن بنُ مُعاوِيَة بنُ هِشام بنُ عَبدِ اَلمَلِك بنُ مُروان بنُ اَلحَكَم بنُ اَلعاصْ اَلأُمَويّ اَلقُرَشِيّ تِمثالُ عَبْدِ اَلرَّحْمَن اَلدَّاخِل في اَلْمَنْكَب معلومات شخصية الميلاد 19 ذو الحجة 113 هـ / 7 مارس 731 مدِمَشْق، جُنْ...

 

2023 Australian Swimming Trials 2023 Australian Swimming TrialsHost cityMelbourne, VictoriaDate(s)13–18 JuneVenue(s)Melbourne Sports and Aquatic CentreEvents56 (men: 28; women: 28) The 2023 Australian Swimming Trials are scheduled to be held from 13 to 18 June 2023 at the Melbourne Sports and Aquatic Centre in Melbourne, Victoria to determine Australia's swimming team for the 2023 World Aquatics Championships in Fukuoka, Japan.[1] A host of Dolphins will miss the event and World...

French football player and manager (born 1948)Michel Mézy Mézy in 2013Personal informationFull name Szakács Márton MézyDate of birth (1948-08-15) 15 August 1948 (age 75)Place of birth Aigues-Mortes, FranceHeight 1.75 m (5 ft 9 in)Position(s) MidfielderSenior career*Years Team Apps (Gls)1965–1975 Nîmes 248 (17)1975–1977 Lille 61 (5)1977–1979 Nîmes 71 (3)1979–1982 Montpellier 78 (1)Total 458 (26)International career1970–1973 France 17 (1)Managerial career199...

 

سايمون وشوسترسايمون وشوسترالشعارمعلومات عامةالبلد  الولايات المتحدة[1] التأسيس 1924النوع شركةالمقر الرئيسي نيويورك ، الولايات المتحدةمواقع الويب  القائمة ... simonandschuster.com (الإنجليزية)simonandschuster.com.au[2] (الإنجليزية)simonandschuster.ca[2] (الإنجليزية)simonandschuster.co.in[2] (ال...

 

LiftaLingkunganNegara PalestineProvinsiYerusalemKotaYerusalemZona waktuUTC+3 (EAT) • Musim panas (DST)UTC+3 (EAT) Lifta adalah sebuah lingkungan di kota suci Yerusalem di Provinsi Yerusalem, tepatnya di sebelah barat Yerussalem.[1] Referensi ^ National Geospatial-Intelligence Agency. GeoNames database entry. (search Diarsipkan 2017-03-18 di Wayback Machine.) Accessed 12 May 2011. lbsLingkungan di YerusalemLingkungan-lingkungan Yerusalem sebelah timur garis gencatan se...

2007 video gameSteel HorizonDeveloper(s)Climax GroupPublisher(s)KonamiPlatform(s)PlayStation PortableNintendo DSReleaseNintendo DSMarch 20, 2007 PlayStation PortableJuly 2, 2007Genre(s)Turn-based strategy, Real-time tacticsMode(s)Single player, Multiplayer Steel Horizon is a turn-based strategy game developed by British studio Climax Group and published by Konami for the Sony PlayStation Portable and Nintendo DS. It was released in March 2007 in the United States for the Nintendo DS, with a l...

 

  لمعانٍ أخرى، طالع روتشستر (توضيح). هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (نوفمبر 2020) روتشستر   الإحداثيات 51°23′16″N 0°30′2...