Generalized Poincaré conjecture

In the mathematical area of topology, the generalized Poincaré conjecture is a statement that a manifold which is a homotopy sphere is a sphere. More precisely, one fixes a category of manifolds: topological (Top), piecewise linear (PL), or differentiable (Diff). Then the statement is

Every homotopy sphere (a closed n-manifold which is homotopy equivalent to the n-sphere) in the chosen category (i.e. topological manifolds, PL manifolds, or smooth manifolds) is isomorphic in the chosen category (i.e. homeomorphic, PL-isomorphic, or diffeomorphic) to the standard n-sphere.

The name derives from the Poincaré conjecture, which was made for (topological or PL) manifolds of dimension 3, where being a homotopy sphere is equivalent to being simply connected and closed. The generalized Poincaré conjecture is known to be true or false in a number of instances, due to the work of many distinguished topologists, including the Fields medal awardees John Milnor, Steve Smale, Michael Freedman, and Grigori Perelman.

Status

Here is a summary of the status of the generalized Poincaré conjecture in various settings.

  • Top: true in all dimensions.
  • PL: true in dimensions other than 4; unknown in dimension 4, where it is equivalent to Diff.
  • Diff: false generally, the first known counterexample is in dimension 7. True in some dimensions including 1, 2, 3, 5, 6, 12, 56 and 61. The case of dimension 4 is equivalent to PL. The previous list includes all odd dimensions and all even dimensions between 6 and 62 for which the conjecture is true; it may be true for some additional even dimensions though it is conjectured that this is not the case.[1]

Thus the veracity of the Poincaré conjectures changes according to which category it is formulated in. More generally the notion of isomorphism differs between the categories Top, PL, and Diff. It is the same in dimension 3 and below. In dimension 4, PL and Diff agree, but Top differs. In dimensions above 6 they all differ. In dimensions 5 and 6 every PL manifold admits an infinitely differentiable structure that is so-called Whitehead compatible.[2]

History

The cases n = 1 and 2 have long been known by the classification of manifolds in those dimensions.

For a PL or smooth homotopy n-sphere, in 1960 Stephen Smale proved for that it was homeomorphic to the n-sphere and subsequently extended his proof to ;[3] he received a Fields Medal for his work in 1966. Shortly after Smale's announcement of a proof, John Stallings gave a different proof for dimensions at least 7 that a PL homotopy n-sphere was homeomorphic to the n-sphere, using the notion of "engulfing".[4] E. C. Zeeman modified Stalling's construction to work in dimensions 5 and 6.[5] In 1962, Smale proved that a PL homotopy n-sphere is PL-isomorphic to the standard PL n-sphere for n at least 5.[6] In 1966, M. H. A. Newman extended PL engulfing to the topological situation and proved that for a topological homotopy n-sphere is homeomorphic to the n-sphere.[7]

Michael Freedman solved the topological case in 1982 and received a Fields Medal in 1986.[8] The initial proof consisted of a 50-page outline, with many details missing. Freedman gave a series of lectures at the time, convincing experts that the proof was correct. A project to produce a written version of the proof with background and all details filled in began in 2013, with Freedman's support. The project's output, edited by Stefan Behrens, Boldizsar Kalmar, Min Hoon Kim, Mark Powell, and Arunima Ray, with contributions from 20 mathematicians, was published in August 2021 in the form of a 496-page book, The Disc Embedding Theorem.[9][10]

Grigori Perelman solved the case (where the topological, PL, and differentiable cases all coincide) in 2003 in a sequence of three papers.[11][12][13] He was offered a Fields Medal in August 2006 and the Millennium Prize from the Clay Mathematics Institute in March 2010, but declined both.

Exotic spheres

The generalized Poincaré conjecture is true topologically, but false smoothly in some dimensions. This results from the construction of the exotic spheres, manifolds that are homeomorphic, but not diffeomorphic, to the standard sphere, which can be interpreted as non-standard smooth structures on the standard (topological) sphere.

Thus the homotopy spheres that John Milnor produced are homeomorphic (Top-isomorphic, and indeed piecewise linear homeomorphic) to the standard sphere , but are not diffeomorphic (Diff-isomorphic) to it, and thus are exotic spheres.

Michel Kervaire and Milnor showed that the oriented 7-sphere has 28 = A001676(7) different smooth structures (or 15 ignoring orientations), and in higher dimensions there are usually many different smooth structures on a sphere.[14] It is suspected that certain differentiable structures on the 4-sphere, called Gluck twists, are not isomorphic to the standard one, but at the moment there are no known topological invariants capable of distinguishing different smooth structures on a 4-sphere.[15]

PL

For piecewise linear manifolds, the Poincaré conjecture is true except possibly in dimension 4, where the answer is unknown, and equivalent to the smooth case. In other words, every compact PL manifold of dimension not equal to 4 that is homotopy equivalent to a sphere is PL isomorphic to a sphere.[2]

References

  1. ^ Wang, Guozhen; Xu, Zhouli (2017). "The triviality of the 61-stem in the stable homotopy groups of spheres". Ann. Math. (2). 186 (2): 501–580. arXiv:1601.02184. Zbl 1376.55013. See Corollaries 1.13 and 1.15 and Conjecture 1.17.
  2. ^ a b See Buoncristiano, Sandro (2003). "Fragments of Geometric Topology from the Sixties" (PDF). Geometry & Topology Monographs. 6.
  3. ^ Smale, Stephen (1961). "Generalized Poincaré's conjecture in dimensions greater than four". Ann. of Math. (2). 74 (2): 391–406. doi:10.2307/1970239. JSTOR 1970239. MR 0137124.
  4. ^ Stallings, John (1960). "Polyhedral homotopy spheres". Bulletin of the American Mathematical Society. 66 (6): 485–488. doi:10.1090/S0002-9904-1960-10511-3.
  5. ^ Zeeman, Erik Christopher (1962). "The Poincaré conjecture for n greater than or equal to 5". Topology of 3-manifolds and Related Topics (Proc. The Univ. Of Georgia Institute, 1961). Englewood Cliffs, NJ: Prentice–Hall: 198–204. MR 0140113.
  6. ^ Smale, Stephen (1962). "On the structure of manifolds". Amer. J. Math. 84 (3): 387–399. doi:10.2307/2372978. JSTOR 2372978. MR 0153022.
  7. ^ Newman, M. H. A. (1966). "The Engulfing Theorem for Topological Manifolds". Annals of Mathematics. (2). 84 (3): 555–571. doi:10.2307/1970460. JSTOR 1970460. MR 0203708.
  8. ^ Freedman, Michael (1982). "The topology of four-dimensional manifolds". Journal of Differential Geometry. 17 (3): 357–453. doi:10.4310/jdg/1214437136. MR 0679066.
  9. ^ Hartnett, Kevin (September 9, 2021). "New Math Book Rescues Landmark Topology Proof". Quanta Magazine.
  10. ^ The Disc Embedding Theorem
  11. ^ Perelman, Grigori (11 November 2002). "The entropy formula for the Ricci flow and its geometric applications". arXiv:math.DG/0211159.
  12. ^ Perelman, Grigori (10 March 2003). "Ricci flow with surgery on three-manifolds". arXiv:math.DG/0303109.
  13. ^ Perelman, Grigori (17 July 2003). "Finite extinction time for the solutions to the Ricci flow on certain three-manifolds". arXiv:math.DG/0307245.
  14. ^ Kervaire, Michel A.; Milnor, John W. (1963). "Groups of homotopy spheres: I". Annals of Mathematics. 2nd Ser. 77 (3): 504–537. doi:10.2307/1970128. JSTOR 1970128. MR 0148075. This paper calculates the structure of the group of smooth structures on an n-sphere for .
  15. ^ Gluck, Herman (1962). "The Embedding of Two-Spheres in the Four-Sphere". Trans. Amer. Math. Soc. 104 (2): 308–333. doi:10.2307/1993581. JSTOR 1993581.

Read other articles:

أورسولا كوربيرو Úrsula Corberó أورسولا كوربيرو أثناء مشاركتها في حفل جوائز جويا عام 2018 معلومات شخصية اسم الولادة أورسولا كوربيرو ديلغادو الميلاد 11 أغسطس 1989 (العمر 34 سنة)برشلونة، إسبانيا الجنسية  إسبانيا الطول 1.63 متر[1]  الحياة العملية المهنة ممثلة،  وممثلة أفلام،  ...

1978 television film directed by Clive A. Smith The Devil and Daniel MouseAlbum coverGenre Animation Family Fantasy Music Based onThe Devil and Daniel Websterby Stephen Vincent BenétScreenplay byKen SobolStory byStephen Vincent BenétPatrick LoubertDirected byClive A. SmithStarringJim HenshawAnnabel KershawChris WigginsJohn SebastianMusic byJohn SebastianPatricia CullenValerie CarterReggie KnightonCountry of originCanadaOriginal languageEnglishProductionExecutive producerJeffrey KirschProduc...

Divisione No. 3divisione censuariaDivision No. 3 LocalizzazioneStato Canada Provincia Manitoba AmministrazioneLingue ufficialiinglese TerritorioCoordinate49°30′N 98°00′W / 49.5°N 98°W49.5; -98 (Divisione No. 3)Coordinate: 49°30′N 98°00′W / 49.5°N 98°W49.5; -98 (Divisione No. 3) Abitanti44 873 (2006) Divisioni censuarie confinantiDivisione No. 2, Divisione No. 10, Divisione No. 9, Divisione No. 8, Divisione No. 4, Contea d...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. PT Northcliff Citranusa Indonesia TbkJenisPublikKode emitenIDX: SKYBIndustriInvestasi propertiDidirikan1995KantorpusatJakarta, Indonesia PT Northcliff Citranusa Indonesia Tbk adalah sebuah perusahaan publik di Indonesia (IDX: SKYB) yang bergerak sebaga...

  لمعانٍ أخرى، طالع روجر جونز (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) روجر جونز معلومات شخصية الميلاد 2 يونيو 1949 (74 سنة)[1]  مواطنة الولايات المتحدة  الحياة العملية المدرسة الأم ج

Ne doit pas être confondu avec Paradou ou Parrado. Pour l’article ayant un titre homophone, voir Paradox. Les « cubes impossibles » de M. Escher sont des représentations graphiques paradoxales. Un paradoxe, d'après l'étymologie (grec ancien παράδοξος / parádoxos, « contraire à l'opinion commune », de παρά- / pará-, « contre », et δόξα / doxa, « opinion »), est une idée ou une proposition à première vue...

Йоахім Йостеннім. Joachim JoestenНародився 29 червня 1907(1907-06-29)Кельн, Рейнська провінція, Королівство Пруссія, Німецька імперіяПомер серпень 1975 (68 років)Діяльність журналіст, історик, письменникГалузь журналістика[1] і література[1]Знання мов англійська[2][1...

Gambar skema berbagai tipe histerektomi. Histerektomi adalah pengangkatan rahim atau uterus dengan metode pembedahan.[1] Mekanisme Pada saat pengangkatan rahim terjadi, maka serviks atau leher rahim pun juga akan terangkat.[1] Histerektomi dapat dilakukan melalui vagina atau melalui sayatan pada perut, tergantung dari alasan dilakukannya histerektomi.[1] Bila hanya ingin mengangkat rahim, maka histerektomi dapat dilakukan melalui vagina.[1] Jika struktur reprod...

Kintarō-ame Kintarō-ame (金太郎飴code: ja is deprecated , permen kintarō) adalah permen Jepang berbentuk batang yang setelah diiris, tampak gambar wajah Kintarō pada kedua sisi semua butiran permen. Meski gambar pada permukaan permen bukan lagi gambar wajah Kintarō, permen seperti ini tetap disebut kintarō-ame. Permen ini pertama kali diciptakan pada pertengahan zaman Edo (abad ke-18).[1] Kintarō-ame adalah merek dagang milik toko permen Kintarō-ame Honten di Taitō-ku, To...

Travel to engage in sexual activity This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article is written like a personal reflection, personal essay, or argumentative essay that states a Wikipedia editor's personal feelings or presents an original argument about a topic. Please help improve it by rewriting it in an encyclopedic style. (December 2018) (Learn how and when to remove this t...

19th-century phase of Classical architecture Italianate redirects here. For other uses, see Italianate (disambiguation). Osborne House on the Isle of Wight, England, built between 1845 and 1851. It exhibits three typical Italianate features: a prominently bracketed cornice, towers based on Italian campanili and belvederes, and adjoining arched windows.[1] The Italianate style was a distinct 19th-century phase in the history of Classical architecture. Like Palladianism and Neoclassicis...

Real-time operating system RIOTRIOT – The friendly OS for the IoTDeveloperFree University of BerlinFrench Institute for Research in Computer Science and AutomationHamburg University of Applied SciencesOS familyPOSIXWorking stateCurrentSource modelOpen sourceInitial release23 October 2009; 14 years ago (2009-10-23)Latest release2022.04[1] / 9 May 2022; 18 months ago (9 May 2022)Repositorygithub.com/RIOT-OS/RIOT Marketing targetEmbedded systemsAvailable ...

Chronologies La place des Pyramides - Giuseppe De Nittis, 1875. Le bâtiment couvert d’échafaudages est le pavillon de Marsan (incendié pendant la Commune), alors en cours de reconstruction.Données clés 1872 1873 1874  1875  1876 1877 1878Décennies :1840 1850 1860  1870  1880 1890 1900Siècles :XVIIe XVIIIe  XIXe  XXe XXIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin,...

SCTV Music Awards 2011 29 April 2011 - Kemayoran, Jakarta SCTV Music Awards 2011 adalah sebuah ajang penghargaan bagi para insan musik Indonesia yang kesembilan oleh SCTV dan diselenggarakan pada tanggal 29 April 2011, dengan Andhika Pratama, Gading Marten, Astrid Tiar, Reza Bukan, dan Farid Aja sebagai pembawa acara penghargaan tahunan tersebut. Awal perhelatan tahunan SCTV ini ditandai dengan dimulainya polling pemirsa untuk memilih para nomine SCTV Music Awards 2011 mulai tanggal 7 Maret -...

Not to be confused with Honey Pie. 1968 song by the BeatlesWild Honey PieLabel from Venezuela single, released in 1972 with Ob-La-Di, Ob-La-Da as the A-sideSong by the Beatlesfrom the album The Beatles Released22 November 1968Recorded20 August 1968StudioEMI, LondonGenre Experimental pop[1] lo-fi[1] psychedelic folk[2] Length0:52LabelAppleSongwriter(s)Lennon–McCartneyProducer(s)George Martin Wild Honey Pie is a song by the English rock band the Beatles from their 1968...

Ippho SantosaLahir30 Desember 1977 (umur 45)PekanbaruKebangsaanIndonesiaPekerjaanPenulis, Pengusaha, Pembicara, motivator Ippho Santosa (lahir 30 Desember 1977 seorang penulis, pembicara, motivator dan pengusaha asal Indonesia. Kehidupan pribadi Ia lahir di Pekanbaru, Riau, dari pasangan Dwianto Sri Santosa dan Husnelly Nedvia. Ayahnya berasal dari Yogyakarta, sedangkan ibunya dari Sumatera Barat.[1] Awalnya Ippho berkarier sebagai pemasar di Sinar Mas Group, Genting Highland, da...

Genus of beetles Arctobyrrhus Arctobyrrhus dovrensis Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Coleoptera Family: Byrrhidae Tribe: Byrrhini Genus: ArctobyrrhusMünster, 1902 Synonyms[1] Tylicus Casey, 1912 Arctobyrrhus is a genus of pill beetles in the family Byrrhidae. There are at least two described species in Arctobyrrhus.[1][2][3] Species These two species belong to the genus Arctobyrrhus: Arctob...

2022 film directed by Talia Osteen Sex AppealRelease posterDirected byTalia OsteenScreenplay byTate HanyokProduced by Jeremy Garelick Ryan Bennett Mark Fasano Mickey Liddell Will Phelps Pete Shilaimon Tobias Weymar Starring Mika Abdalla Jake Short CinematographySherri KaukEdited byGennady FridmanMusic byJeffrey BrodskyProductioncompanyAmerican HighDistributed byHuluRelease dateJanuary 14, 2022Running time90 minutesCountryUnited StatesLanguageEnglish Sex Appeal is a 2022 American teen sex come...

Sarapan Telur mata sapi dengan teknik 'sunny side up' di atas roti panggang. Bagian dari sarapan ala Amerika Sarapan atau makan pagi adalah keadaan untuk mengonsumsi hidangan utama pada pagi hari. Waktu sarapan dimulai dari pukul 06.00 pagi sampai dengan pukul 11.00 pagi. Dianjurkan menyantap makanan yang ringan bagi kerja perncernaan, sehingga dianjurkan untuk mengonsumsi makanan yang memiliki kadar serat tinggi dengan protein yang cukup namun dengan kadar lemak rendah. Manfaat Memberikan nu...

Novel This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (September 2023) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (August 2022) (Learn how and when to remove this template message) Half of Freedom AuthorDr. Ghazi Abdul Rahman Al GosaibiCover ...