Epistemic closure

Epistemic closure[1] is a property of some belief systems. It is the principle that if a subject knows , and knows that entails , then can thereby come to know . Most epistemological theories involve a closure principle and many skeptical arguments assume a closure principle.

On the other hand, some epistemologists, including Robert Nozick, have denied closure principles on the basis of reliabilist accounts of knowledge. Nozick, in Philosophical Explanations, advocated that, when considering the Gettier problem, the least counter-intuitive assumption we give up should be epistemic closure. Nozick suggested a "truth tracking" theory of knowledge, in which the x was said to know P if x's belief in P tracked the truth of P through the relevant modal scenarios.[2]

A subject may not actually believe q, for example, regardless of whether he or she is justified or warranted. Thus, one might instead say that knowledge is closed under known deduction: if, while knowing p, S believes q because S knows that p entails q, then S knows q.[1] An even stronger formulation would be as such: If, while knowing various propositions, S believes p because S knows that these propositions entail p, then S knows p.[1] While the principle of epistemic closure is generally regarded as intuitive,[3] philosophers such as Robert Nozick and Fred Dretske have argued against it.[4]

Epistemic closure and skeptical arguments

The epistemic closure principle typically takes the form of a modus ponens argument:

  1. S knows p.
  2. S knows that p entails q.
  3. Therefore, S knows q.

This epistemic closure principle is central to many versions of skeptical arguments. A skeptical argument of this type will involve knowledge of some piece of widely accepted information to be knowledge, which will then be pointed out to entail knowledge of some skeptical scenario, such as the brain in a vat scenario or the Cartesian evil demon scenario. A skeptic might say, for example, that if you know that you have hands, then you know that you are not a handless brain in a vat (because knowledge that you have hands implies that you know you are not handless, and if you know that you are not handless, then you know that you are not a handless brain in a vat).[5] The skeptic will then utilize this conditional to form a modus tollens argument. For example, the skeptic might make an argument like the following:

  1. You do not know that you are not a handless brain in a vat (~K(~h))
  2. If you know that you have hands, then you know that you are not a handless brain in a vat (K(o) → K(~h))
  3. Conclusion: Therefore, you do not know that you have hands (~K(o))

Much of the epistemological discussion surrounding this type of skeptical argument involves whether to accept or deny the conclusion, and how to do each. Ernest Sosa says that there are three possibilities in responding to the skeptic:

  1. Agree with the skeptic by granting him both premises and the conclusion (1, 2, c)
  2. Disagree with the skeptic by denying premise 2 and the conclusion, but maintaining premise 1 (1, ~2, ~c) as Nozick and Dretske do. This amounts to denying the epistemic closure principle.
  3. Disagree with the skeptic by denying premise 1 and the conclusion, but maintaining premise 2 (~1, 2, ~c) as Moore does. This amounts to maintaining the epistemic closure principle, and holding that knowledge is closed under known implication.

Justificatory closure

In the seminal 1963 paper, “Is Justified True Belief Knowledge?”, Edmund Gettier gave an assumption (later called the “principle of deducibility for justification” by Irving Thalberg, Jr.)[6] that would serve as a basis for the rest of his piece: “for any proposition P, if S is justified in believing P and P entails Q, and S deduces Q from P and accepts Q as a result of this deduction, then S is justified in believing Q.”[7] This was seized upon by Thalberg, who rejected the principle in order to demonstrate that one of Gettier's examples fails to support Gettier's main thesis that justified true belief is not knowledge (in the following quotation, (1) refers to “Jones will get the job”, (2) refers to “Jones has ten coins”, and (3) is the logical conjunction of (1) and (2)):

Why doesn't Gettier's principle (PDJ) hold in the evidential situation he has described? You multiply your risks of being wrong when you believe a conjunction. [… T]he most elementary theory of probability indicates that Smith's prospects of being right on both (1) and (2), namely, of being right on (3), are bound to be less favorable than his prospects of being right on either (1) or (2). In fact, Smith's chances of being right on (3) might not come up to the minimum standard of justification which (1) and (2) barely satisfy, and Smith would be unjustified in accepting (3). (Thalberg 1969, p. 798)

Epistemic closure in U.S. political discussion

The term "epistemic closure" has been used in an unrelated sense in American political debate to refer to the claim that political belief systems can be closed systems of deduction, unaffected by empirical evidence.[8] This use of the term was popularized by libertarian blogger and commentator Julian Sanchez in 2010 as an extreme form of confirmation bias.[8][9]

References

  1. ^ a b c Luper, Steven (31 December 2001). "Epistemic Closure". The Epistemic Closure Principle. Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University.
  2. ^ Philosophical explanations, By Robert Nozick (Harvard 1981), page 204
  3. ^ Brady, Michael; Pritchard, Duncan (2005). "Epistemological Contextualism: Problems and Prospects". The Philosophical Quarterly. 55 (219): 161–171. doi:10.1111/j.0031-8094.2005.00393.x.
  4. ^ "Epistemic Closure". Stanford Encyclopedia of Philosophy.
  5. ^ Sosa, Ernest (1999-10-01). "How to Defeat Opposition to Moore". Noûs. 33: 141–153. doi:10.1111/0029-4624.33.s13.7. ISSN 1468-0068.
  6. ^ Thalberg Jr., Irving (November 1969). "In Defense of Justified True Belief". Journal of Philosophy. 66 (22): 794–803. doi:10.2307/2024370. JSTOR 2024370.
  7. ^ Gettier, Edmund (June 1963). "Is Justified True Belief Knowledge?" (PDF). Analysis. 23 (6): 121–3. doi:10.1093/analys/23.6.121. JSTOR 3326922.
  8. ^ a b Patricia Cohen (27 April 2010). "'Epistemic Closure'? Those are Fighting Words". The New York Times. Retrieved 28 November 2012.
  9. ^ Sanchez, Julian (26 March 2010). "Frum, Cocktail Parties, and the Threat of Doubt".

Read other articles:

1956 film by Robert Rossen Alexander the GreatTheatrical release posterDirected byRobert RossenWritten byRobert RossenProduced byRobert RossenStarringRichard BurtonFredric MarchClaire BloomDanielle DarrieuxCinematographyRobert KraskerEdited byRalph KemplenMusic byMario NascimbeneProductioncompaniesRossen FilmsC.B. Films S.A.Distributed byUnited ArtistsRelease dates March 22, 1956 (1956-03-22) (Royal World Premiere, London)Running time147 minutes (pre-release version); 136 minut...

 

Deforestasi di hutan Amazon terjadi di sepanjang akses jalan yang dibangun di kawasan hutan Manajemen hutan adalah cabang ilmu kehutanan yang menghubungkan aspek administratif, ekonomi, hukum, dan sosial dengan aspek ilmiah dan teknis seperti silvikultur, perlindungan hutan, dan dendrologi. Manajemen hutan juga mencakup estetika, penangkapan ikan air tawar, rekreasi ruang terbuka, manajemen resapan air, satwa liar, dan hasil hutan kayu maupun non-kayu.[1] Manajemen bisa berdasarkan pa...

 

GasolineSampul versi Digital dan VHSAlbum studio karya KeyDirilis30 Agustus 2022 (2022-08-30)GenreK-popDurasi36:56BahasaKoreaInggrisLabel SM Dreamus Kronologi Key Bad Love(2021) Gasoline(2022) Good & Great(2023) Singel dalam album Gasoline GasolineDirilis: 30 Agustus 2022 Sampul KillerSampul digital Singel dalam album Killer KillerDirilis: 13 Februari 2023 Gasoline adalah album studio kedua dari penyanyi Korea Selatan Key. Album ini dirilis pada tanggal 30 Agustus 2022, melalui S...

Fa'a'ā International AirportAéroport International Tahiti Fa'a'āIATA: PPTICAO: NTAAInformasiJenisPublikPengelolaSETIL - AéroportsMelayaniTahiti, Polinesia PrancisLokasiPape'eteMaskapai penghubungAir TahitiAir Tahiti NuiKetinggian dpl mdplSitus webhttp://tahiti-aeroport.pfPetaNTAALokasi bandara di Polinesia PrancisLandasan pacu Arah Panjang Permukaan m kaki 04/22 3,420 11 Bitumen Statistik (2011)Total penumpang1,169,819Sumber: French AIP[1] Aéroport.fr[2] Pesawat...

 

Appen. Appen adalah kota yang terletak di distrik Pinneberg, Schleswig-Holstein, Jerman. Kota Appen memiliki luas sebesar 20.26 km². Appen pada tahun 2006, memiliki penduduk sebanyak 5.833 jiwa. lbsKota dan kotamadya di Pinneberg (distrik) Appen Barmstedt Bevern Bilsen Bokel Bokholt-Hanredder Bönningstedt Borstel-Hohenraden Brande-Hörnerkirchen Bullenkuhlen Ellerbek Ellerhoop Elmshorn Groß Nordende Groß Offenseth-Aspern Halstenbek Haselau Haseldorf Hasloh Heede Heidgraben Heist Heli...

 

Tour d'Abou Dabi 2018 GénéralitésCourse4e Tour d'Abou DabiCompétitionUCI World Tour 2018 2.UWTÉtapes5Dates21 – 25 février 2018Distance687,6 kmPays Émirats arabes unisLieu de départMadinat ZayedLieu d'arrivéeJebel HafeetÉquipes20Partants139Arrivants132Vitesse moyenne42,966 km/hSite officielSite officielRésultatsVainqueur Alejandro Valverde (Movistar Team)Deuxième Wilco Kelderman (Team Sunweb)Troisième Miguel Ángel López (Astana)Classement par points Elia Viviani (Quick-Step Fl...

Sugar transport tissue in vascular plants Phloem (orange) transports products of photosynthesis to various parts of the plant. Cross-section of a flax plant stem: PithProtoxylemMetaxylemPhloemSclerenchyma (bast fibre)CortexEpidermis Phloem (/ˈfloʊ.əm/, FLOH-əm) is the living tissue in vascular plants that transports the soluble organic compounds made during photosynthesis and known as photosynthates, in particular the sugar sucrose,[1] to the rest of the plant. This transport proc...

 

Bruder Bernardus Hoecken, Bruder Pertama Kongregasi Bruder FIC.Lahir pada tahun 1809 dan meninggal pada tahun1880 Congregatio Fratrum Immaculatae Conceptionis Beatae Mariae Virginis (bahasa Indonesia: Kongregasi Para Bruder Santa Perawan Maria Yang Dikandung Tak Bernoda (Bruder FIC)) adalah sebuah Ordo di Gereja Katolik Roma yang didirikan oleh Mgr. Ludovicus Rutten.[1] Sementara itu, Ko-Pendiri, sekaligus bruder pertamanya adalah Bernardus Hoecken.[1] Kongregasi ini didirikan...

 

1 آنة هندية وجه العملة: تمثال نصفي لملك جورج السادس, مع كتابة نصية جورج السادس الملك الإمبراطور. ظهر العملة: سنة الضرب والقيمة العددية الاسمية بالإنجليزية، الأردية، البنغالية، تيلغو و الديفاناغاري. 125,548,000 عملة سكت في الفترة من (1938 إلى 1940) طابع بريدي للدولة القعيطية بقيمة آن�...

Former English football club This article is about the club that existed under this name until 2004. For the club formed by supporters in 2002, see AFC Wimbledon. Football clubWimbledonBadge used 1981–2003; see below for othersFull nameWimbledon Football ClubNickname(s)The Dons, The Wombles, The Crazy GangFounded1889 (as Wimbledon Old Centrals[n 1])Dissolved21 June 2004 (Relocation of Wimbledon F.C. to Milton Keynes)Ground Plough Lane (1912–1991) For others see below Final season ...

 

Para la pieza heráldica, véase Cruz de San Andrés. No debe confundirse con ASPA. Aspa municipio de CataluñaBanderaEscudo Castillo palacio de Aspa AspaUbicación de Aspa en España AspaUbicación de Aspa en la provincia de LéridaPaís  España• Com. autónoma  Cataluña• Provincia Lérida• Comarca Segriá• Partido judicial Lérida[1]​Ubicación 41°29′51″N 0°40′24″E / 41.4975, 0.67333333333333&...

 

Annual event An ironworkers union at the 2008 Toronto Labour Day Parade. The Toronto Labour Day Parade is an annual event held in the city of Toronto.[1] The parade is organized by the Toronto and York District Labour Council following a route down University Avenue, then west along Queen Street West then proceeding down Dufferin Street entering the Canadian National Exhibition via the Dufferin Gate. The first parade was held in December 1872 and was organized by what was then the Tor...

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

 

Chicago transit car 6000-seriesA two-car Ravenswood train made of a 6000-series pair in April 1966In service1950–1992ManufacturerSt. Louis Car CompanyConstructed1950–1959Entered service1950Number built720Number in service4 (in Heritage Fleet service)[1]Number preserved13Successor3200-seriesFleet numbers6001–6720Capacity47 (A unit), 51 (B unit)OperatorsChicago Transit Authority, SEPTASpecificationsCar length48 ft (14.63 m)Width9 ft 4 in (2.84 ...

 

Seti IChân dung Seti I tại đền thờ ở AbydosPharaonVương triều1290–1279 TCNTiên vươngRamesses IKế vịRamesses IITên hiệu Tên ngai (Praenomen) Menmaatre Sự vĩnh cửu là sức mạnh của Ra Tên riêng Seti MerenptahNgười của thần Seth, Ptah yêu quý Tên Horus Kanakht Khaemwaset-SeankhtawyBò đực khỏe mạnh, lớn lên tại Thebes, người ban sự sông cho 2 vùng đất Tên Nebty (hai quý bà) Wehemmesut Sekhemkhepesh Derpedjetpesdj...

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

 

Chinese painter and poet (1470–1524) In this Chinese name, the family name is Tang (唐).Tang YinBorn1470Died1524 (aged 54)EducationProtégé of Wen LinKnown forPoetry, Painting Tang Yin (Chinese: 唐寅; pinyin: Táng Yín; Cantonese Yale: Tong Yan; 1470–1524), courtesy name Bohu (伯虎), was a Chinese painter, calligrapher, and poet of the Ming dynasty period. Even though he was born during the Ming dynasty, many of his paintings, especially those of people, were illus...

 

Census town in Telangana, IndiaChoutuppalCensus townChoutuppalLocation in Telangana, IndiaShow map of TelanganaChoutuppalChoutuppal (India)Show map of IndiaCoordinates: 17°15′03″N 78°53′50″E / 17.25083°N 78.89722°E / 17.25083; 78.89722Country IndiaStateTelanganaDistrictYadadri BhuvanagiriMetropolitan areaHyderabad Metropolitan RegionGovernment • TypeMunicipal Council • BodyMunicipalityArea[1] • Total12.79...

British multinational banking and financial services company This article is about the British banking firm. For items that may be pluralised as Barclays, see Barclay (disambiguation). Barclays plcHeadquarters at One Churchill Place in Canary Wharf, LondonFormerlyBarclays Bank plc (1896–1985)[1]Company typePublicTraded asLSE: BARCNYSE: BCSFTSE 100 ComponentISINGB0031348658IndustryBankingFinancial servicesFounded17 November 1690; 333 years ago (1690-11-17)...

 

Pandemia di COVID-19 a GuernseyepidemiaCasi confermati totali per giurisdizione[1]      100–299 casi confermati      10–99 casi confermati      1–9 casi confermati      Nessun caso confermato o nessun datoPatologiaCOVID-19 OrigineWuhan (Cina) Nazione coinvolta Guernsey Periodo9 marzo 2020 -5 maggio 2023 Dati statistici[2]Numero di casi770[3] Numero&#...