Domain (mathematical analysis)

In mathematical analysis, a domain or region is a non-empty, connected, and open set in a topological space. In particular, it is any non-empty connected open subset of the real coordinate space Rn or the complex coordinate space Cn. A connected open subset of coordinate space is frequently used for the domain of a function.[a]

The basic idea of a connected subset of a space dates from the 19th century, but precise definitions vary slightly from generation to generation, author to author, and edition to edition, as concepts developed and terms were translated between German, French, and English works. In English, some authors use the term domain,[1] some use the term region,[2] some use both terms interchangeably,[3] and some define the two terms slightly differently;[4] some avoid ambiguity by sticking with a phrase such as non-empty connected open subset.[5]

Conventions

One common convention is to define a domain as a connected open set but a region as the union of a domain with none, some, or all of its limit points.[6] A closed region or closed domain is the union of a domain and all of its limit points.

Various degrees of smoothness of the boundary of the domain are required for various properties of functions defined on the domain to hold, such as integral theorems (Green's theorem, Stokes theorem), properties of Sobolev spaces, and to define measures on the boundary and spaces of traces (generalized functions defined on the boundary). Commonly considered types of domains are domains with continuous boundary, Lipschitz boundary, C1 boundary, and so forth.

A bounded domain is a domain that is bounded, i.e., contained in some ball. Bounded region is defined similarly. An exterior domain or external domain is a domain whose complement is bounded; sometimes smoothness conditions are imposed on its boundary.

In complex analysis, a complex domain (or simply domain) is any connected open subset of the complex plane C. For example, the entire complex plane is a domain, as is the open unit disk, the open upper half-plane, and so forth. Often, a complex domain serves as the domain of definition for a holomorphic function. In the study of several complex variables, the definition of a domain is extended to include any connected open subset of Cn.

In Euclidean spaces, one-, two-, and three-dimensional regions are curves, surfaces, and solids, whose extent are called, respectively, length, area, and volume.

Historical notes

Definition. An open set is connected if it cannot be expressed as the sum of two open sets. An open connected set is called a domain.

German: Eine offene Punktmenge heißt zusammenhängend, wenn man sie nicht als Summe von zwei offenen Punktmengen darstellen kann. Eine offene zusammenhängende Punktmenge heißt ein Gebiet.

According to Hans Hahn,[7] the concept of a domain as an open connected set was introduced by Constantin Carathéodory in his famous book (Carathéodory 1918). In this definition, Carathéodory considers obviously non-empty disjoint sets. Hahn also remarks that the word "Gebiet" ("Domain") was occasionally previously used as a synonym of open set.[8] The rough concept is older. In the 19th and early 20th century, the terms domain and region were often used informally (sometimes interchangeably) without explicit definition.[9]

However, the term "domain" was occasionally used to identify closely related but slightly different concepts. For example, in his influential monographs on elliptic partial differential equations, Carlo Miranda uses the term "region" to identify an open connected set,[10][11] and reserves the term "domain" to identify an internally connected,[12] perfect set, each point of which is an accumulation point of interior points,[10] following his former master Mauro Picone:[13] according to this convention, if a set A is a region then its closure A is a domain.[10]

See also

Notes

  1. ^ However, functions may be defined on sets that are not topological spaces.
  1. ^ For instance (Sveshnikov & Tikhonov 1978, §1.3 pp. 21–22).
  2. ^ For instance (Churchill 1948, §1.9 pp. 16–17); (Ahlfors 1953, §2.2 p. 58); (Rudin 1974, §10.1 p. 213) reserves the term domain for the domain of a function; (Carathéodory 1964, p. 97) uses the term region for a connected open set and the term continuum for a connected closed set.
  3. ^ For instance (Townsend 1915, §10, p. 20); (Carrier, Krook & Pearson 1966, §2.2 p. 32).
  4. ^ For instance (Churchill 1960, §1.9 p. 17), who does not require that a region be connected or open.
  5. ^ For instance (Dieudonné 1960, §3.19 pp. 64–67) generally uses the phrase open connected set, but later defines simply connected domain (§9.7 p. 215); Tao, Terence (2016). "246A, Notes 2: complex integration"., also, (Bremermann 1956) called the region an open set and the domain a concatenated open set.
  6. ^ For instance (Fuchs & Shabat 1964, §6 pp. 22–23); (Kreyszig 1972, §11.1 p. 469); (Kwok 2002, §1.4, p. 23.)
  7. ^ See (Hahn 1921, p. 85 footnote 1).
  8. ^ Hahn (1921, p. 61 footnote 3), commenting the just given definition of open set ("offene Menge"), precisely states:-"Vorher war, für diese Punktmengen die Bezeichnung "Gebiet" in Gebrauch, die wir (§ 5, S. 85) anders verwenden werden." (Free English translation:-"Previously, the term "Gebiet" was occasionally used for such point sets, and it will be used by us in (§ 5, p. 85) with a different meaning."
  9. ^ For example (Forsyth 1893) uses the term region informally throughout (e.g. §16, p. 21) alongside the informal expression part of the z-plane, and defines the domain of a point a for a function f to be the largest r-neighborhood of a in which f is holomorphic (§32, p. 52). The first edition of the influential textbook (Whittaker 1902) uses the terms domain and region informally and apparently interchangeably. By the second edition (Whittaker & Watson 1915, §3.21, p. 44) define an open region to be the interior of a simple closed curve, and a closed region or domain to be the open region along with its boundary curve. (Goursat 1905, §262, p. 10) defines région [region] or aire [area] as a connected portion of the plane. (Townsend 1915, §10, p. 20) defines a region or domain to be a connected portion of the complex plane consisting only of inner points.
  10. ^ a b c See (Miranda 1955, p. 1, 1970, p. 2).
  11. ^ Precisely, in the first edition of his monograph, Miranda (1955, p. 1) uses the Italian term "campo", meaning literally "field" in a way similar to its meaning in agriculture: in the second edition of the book, Zane C. Motteler appropriately translates this term as "region".
  12. ^ An internally connected set is a set whose interior is connected.
  13. ^ See (Picone 1923, p. 66).

References

Read other articles:

Эта статья — о японском эскадренном миноносце времён Второй Мировой войны. Об эсминце типа «Икадзути» см. Инадзума (эсминец, 1899); об эсминце Морских сил Самообороны типа «Мурасамэ» см. Инадзума (эсминец, 1998). «Инадзума» 電 «Инадзума» 24 марта 1936 года Служб...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) الغريب بعد مرور 10 سنوات 10年後の異邦人 الصنف غموض، دراما، رومنسية مأخوذ عن المحقق كونان تاريخ الصدور 2009 مدة �...

(9918) 1979 MK3 ВідкриттяВідкривач Е. Гелін,Ш. Дж. БасМісце відкриття Обсерваторія Сайдинг-СпрінгДата відкриття 25 червня 1979ПозначенняТимчасові позначення 1979 MK3 1988 CXКатегорія малої планети Астероїд головного поясуОрбітальні характеристики[1] Епоха 4 листопада 2013 (2 456 600,5 ...

  لمعانٍ أخرى، طالع رون رايلي (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) رون رايلي معلومات شخصية الميلاد 20 يوليو 1948 (75 سنة)  مونتريال  مواطنة كندا  الوزن 190 رطل  الحياة العملية المه

This film-related list is incomplete; you can help by adding missing items. (August 2008) Cinema of Mexico List of Mexican films Mexican Animation Horror films 1890s 1900s 1910s 1920s 1930s 1940s 1940 1941 1942 1943 19441945 1946 1947 1948 1949 1950s 1950 1951 1952 1953 19541955 1956 1957 1958 1959 1960s 1960 1961 1962 1963 19641965 1966 1967 1968 1969 1970s 1970 1971 1972 1973 19741975 1976 1977 1978 1979 1980s 1980 1981 1982 1983 19841985 1986 1987 1988 1989 1990s 1990 1991 1992 1993 199419...

For other uses, see Upside Down (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Upsidedown – news · newspapers · books · scholar · JSTOR (August 2014) (Learn how and when to remove this template message) The UpsidedownBackground informationOriginPortland, Oregon, United StatesGenresAlte...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Sekolah Tinggi Theologi Renatus atau STTR adalah Lembaga Pendidikan Tinggi Theologi yang berpusat di Pematang Siantar, nama STTR di ambil dari nama Bapak Rohani umat Pentakosta yaitu Renatus Siburian. yang menyelenggarakan pendidikan sejak tahun 2005,...

1971 British horror film Countess DraculaTheatrical release posterDirected byPeter SasdyWritten byJeremy PaulProduced byAlexander PaalStarringIngrid PittNigel GreenLesley-Anne DownCinematographyKenneth TalbotEdited byHenry RichardsonMusic byHarry RobertsonProductioncompanyHammer Film ProductionsDistributed byRank Film DistributorsRelease date 31 January 1971 (1971-01-31) (London) Running time93 minutesCountryUnited KingdomLanguageEnglish Countess Dracula is a 1971 British H...

2019 song by Blossoms Your GirlfriendSingle by Blossomsfrom the album Foolish Loving Spaces B-sideTorn UpReleased20 June 2019Length2:41LabelVirgin EMISongwriter(s)Tom OgdenProducer(s)James Skelly Rich TurveyBlossoms singles chronology How Long Will This Last? (2018) Your Girlfriend (2019) The Keeper (2019) Your Girlfriend is a song performed by English rock band Blossoms. The song was released as a single in the United Kingdom on 20 June 2019 by Virgin EMI Records as the lead single from thei...

British television game show (1991–2002) This article is about the British TV show. For other uses, see Big break (disambiguation). Big BreakTitle card, 1991–1996GenreSports game showCreated byRoger MedcalfMike KempTerry MardellPresented byJim DavidsonStarringJohn VirgoVoices of Colin Ward Lewis (1991–1996) Zora Suleman (1997) Charles Nove (1998–2002) Theme music composerThe Snooker Song by Captain SensibleComposerMike BattCountry of originUnited KingdomOriginal languageEnglishNo. of ...

American politician (1835–1909) Thomas Valentine CooperPennsylvania House of Representatives, Delaware CountyIn office1870–1871Preceded byAugustus B. Leedom[1]Succeeded byTyron LewisPennsylvania House of Representatives, Delaware CountyIn office1872–1873Preceded byTyron LewisSucceeded byOrson Flagg BullardPennsylvania State Senate, 5th districtIn office1873–1874Preceded byWilliam B. WaddellSucceeded byJohn Edgar ReyburnPennsylvania State Senate, 9th districtIn office1875–188...

Indian actor and screenwriter (born 1935) This article is about the actor and screenwriter. For the town, see Salem Khan. For other uses, see Salim Khan (disambiguation). Salim KhanKhan in August 2012Born (1935-11-24) 24 November 1935 (age 88)Indore, Indore State, British India(present-day Madhya Pradesh, India)OccupationsActorfilm producerscreenwriterYears active1959–19962013–presentSpouses Salma Khan (Sushila Charak) ​ ​(m. 1964)​ Helen &...

Jason Elam was drafted 70th overall by the Denver Broncos in the 1993 NFL Draft. The Hawaii Rainbow Warriors football team, representing the University of Hawaiʻi at Mānoa, has had 69 American football players drafted into the National Football League (NFL) since the first draft in 1936.[A 1] The highest that a Warrior has ever been drafted is 19th overall, which occurred when Ashley Lelie was drafted in 2002.[3] The St. Louis Rams have drafted the most Warriors with si...

У этого термина существуют и другие значения, см. TNT (значения). нидерл. TNT Express N.V.англ. TNT Express Тип Публичная компания с ограниченной ответственностью (Naamloze Vennootschap) Основание 2011 (как самостоятельная компания Нидерландов); 1946 (как Thomas Nationwide Transport в Австралии) Предшественн...

Ballad from the Mexican Revolution This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: La Adelita – news · newspapers · books · scholar · JSTOR (December 2013) (Learn how and when to remove this template message) Depiction of adelitas, or soldaderas, of the Mexican Revolution. La Adelita is one of the most famou...

Zuidoost-Aziatisch kampioenschap voetbal 2000 2000 อาเซียนฟุตบอลแชมเปียนชิพ Toernooi-informatie Gastland  Thailand Datum 5 november – 18 november 2000 Teams 9 (van 1 confederatie) Stadions 3 (in 2 gaststeden) Winnaar  Thailand (2e titel) Toernooistatistieken Wedstrijden 20 Doelpunten 67  (3,35 per wedstrijd) Topscorer(s) Gendut Christiawan Worrawoot Srimaka (5 goals) Beste speler Kiatisuk Senamuang Navigatie Vorige ...

HVDC power transmission system Cahora Bassa HVDCThe southern line crossing through the Kruger National ParkRoute of the Cahora Bassa HVDC schemeLocationCountryMozambique, South AfricaCoordinates15°36′41″S 32°44′59″E / 15.61139°S 32.74972°E / -15.61139; 32.74972 (Songo Converter Station) 25°55′11″S 28°16′34″E / 25.91972°S 28.27611°E / -25.91972; 28.27611 (Apollo Converter Station)FromCahora Bassa Dam, Mozam...

Public space located in Downtown Pittsburgh Market SquareCity of Pittsburgh Historic DistrictPittsburgh Landmark – PHLFMarket SquareLocationMarket Square in Pittsburgh, Pennsylvania, USABuilt/founded1890sCPHD designatedDecember 28, 1992[1]PHLF designated2009 Market Square is a public space located in Downtown Pittsburgh at the intersection of Forbes Avenue (originally named Diamond Way in colonial times) and Market Street. The square was home to the first courthouse, first jail (bot...

Dual monastery of men and women of the Bridgettine Order Sion Abbey redirects here. For Sion Abbey near Overijssel, see Sion Abbey (Netherlands). 51°28′36.2″N 0°18′42.7″W / 51.476722°N 0.311861°W / 51.476722; -0.311861 Engraving of original seal of the Abbess and Convent of Syon, Isleworth. Seated above is the Virgin Mary, holding the infant Jesus in her right arm. In her left hand she holds a stem of lily, her attribute denoting purity. Below is the founde...

2003 Indian filmDumTheatrical release posterDirected byEeshwar NivasWritten byDharaniBased onDhill (Tamil) by DharaniProduced byAli MoraniKarim MoraniStarringVivek OberoiDiya MirzaAtul KulkarniGovind NamdeoMukesh RishiYashpal SharmaSushant SinghCinematographySurinder RaoEdited byBharat SinghMusic bySandeep ChowtaRelease date 24 January 2003 (2003-01-24) Running time171 minutes[1]CountryIndiaLanguageHindiBudget₹ 7.75 crore[2]Box office₹ 9.07 crore[2] ...