Commutator subgroup

In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group.[1][2]

The commutator subgroup is important because it is the smallest normal subgroup such that the quotient group of the original group by this subgroup is abelian. In other words, is abelian if and only if contains the commutator subgroup of . So in some sense it provides a measure of how far the group is from being abelian; the larger the commutator subgroup is, the "less abelian" the group is.

Commutators

For elements and of a group G, the commutator of and is . The commutator is equal to the identity element e if and only if , that is, if and only if and commute. In general, .

However, the notation is somewhat arbitrary and there is a non-equivalent variant definition for the commutator that has the inverses on the right hand side of the equation: in which case but instead .

An element of G of the form for some g and h is called a commutator. The identity element e = [e,e] is always a commutator, and it is the only commutator if and only if G is abelian.

Here are some simple but useful commutator identities, true for any elements s, g, h of a group G:

  • where (or, respectively, ) is the conjugate of by
  • for any homomorphism ,

The first and second identities imply that the set of commutators in G is closed under inversion and conjugation. If in the third identity we take H = G, we get that the set of commutators is stable under any endomorphism of G. This is in fact a generalization of the second identity, since we can take f to be the conjugation automorphism on G, , to get the second identity.

However, the product of two or more commutators need not be a commutator. A generic example is [a,b][c,d] in the free group on a,b,c,d. It is known that the least order of a finite group for which there exists two commutators whose product is not a commutator is 96; in fact there are two nonisomorphic groups of order 96 with this property.[3]

Definition

This motivates the definition of the commutator subgroup (also called the derived subgroup, and denoted or ) of G: it is the subgroup generated by all the commutators.

It follows from this definition that any element of is of the form

for some natural number , where the gi and hi are elements of G. Moreover, since , the commutator subgroup is normal in G. For any homomorphism f: GH,

,

so that .

This shows that the commutator subgroup can be viewed as a functor on the category of groups, some implications of which are explored below. Moreover, taking G = H it shows that the commutator subgroup is stable under every endomorphism of G: that is, [G,G] is a fully characteristic subgroup of G, a property considerably stronger than normality.

The commutator subgroup can also be defined as the set of elements g of the group that have an expression as a product g = g1 g2 ... gk that can be rearranged to give the identity.

Derived series

This construction can be iterated:

The groups are called the second derived subgroup, third derived subgroup, and so forth, and the descending normal series

is called the derived series. This should not be confused with the lower central series, whose terms are .

For a finite group, the derived series terminates in a perfect group, which may or may not be trivial. For an infinite group, the derived series need not terminate at a finite stage, and one can continue it to infinite ordinal numbers via transfinite recursion, thereby obtaining the transfinite derived series, which eventually terminates at the perfect core of the group.

Abelianization

Given a group , a quotient group is abelian if and only if .

The quotient is an abelian group called the abelianization of or made abelian.[4] It is usually denoted by or .

There is a useful categorical interpretation of the map . Namely is universal for homomorphisms from to an abelian group : for any abelian group and homomorphism of groups there exists a unique homomorphism such that . As usual for objects defined by universal mapping properties, this shows the uniqueness of the abelianization up to canonical isomorphism, whereas the explicit construction shows existence.

The abelianization functor is the left adjoint of the inclusion functor from the category of abelian groups to the category of groups. The existence of the abelianization functor GrpAb makes the category Ab a reflective subcategory of the category of groups, defined as a full subcategory whose inclusion functor has a left adjoint.

Another important interpretation of is as , the first homology group of with integral coefficients.

Classes of groups

A group is an abelian group if and only if the derived group is trivial: [G,G] = {e}. Equivalently, if and only if the group equals its abelianization. See above for the definition of a group's abelianization.

A group is a perfect group if and only if the derived group equals the group itself: [G,G] = G. Equivalently, if and only if the abelianization of the group is trivial. This is "opposite" to abelian.

A group with for some n in N is called a solvable group; this is weaker than abelian, which is the case n = 1.

A group with for all n in N is called a non-solvable group.

A group with for some ordinal number, possibly infinite, is called a hypoabelian group; this is weaker than solvable, which is the case α is finite (a natural number).

Perfect group

Whenever a group has derived subgroup equal to itself, , it is called a perfect group. This includes non-abelian simple groups and the special linear groups for a fixed field .

Examples

Map from Out

Since the derived subgroup is characteristic, any automorphism of G induces an automorphism of the abelianization. Since the abelianization is abelian, inner automorphisms act trivially, hence this yields a map

See also

Notes

  1. ^ Dummit & Foote (2004)
  2. ^ Lang (2002)
  3. ^ Suárez-Alvarez
  4. ^ Fraleigh (1976, p. 108)
  5. ^ Suprunenko, D.A. (1976), Matrix groups, Translations of Mathematical Monographs, American Mathematical Society, Theorem II.9.4

References

Read other articles:

British soldier and politician (1724–1807) The Most HonorableThe Marquess TownshendPCPortrait by George RomneyBorn28 February 1724London, EnglandDied14 September 1807 (aged 83)Raynham Hall, NorfolkAllegiance Kingdom of Great BritainService/branch British ArmyYears of service1743–1796RankField MarshalBattles/warsWar of the Austrian SuccessionJacobite RisingSeven Years' War Field Marshal George Townshend, 1st Marquess Townshend, PC (28 February 1724 – 14 Septem...

 

 

Leigh dans le Grand Manchester. La circonscription de Leigh est une circonscription électorale anglaise située dans le Grand Manchester et représentée à la Chambre des Communes du Parlement britannique. Résultats électoraux Élections générales britanniques de 2019 — Leigh[1] Élections générales britanniques de 2019 Nom Parti politique Voix % ±% Maj. James Grundy Conservateur 21 266 45,27 % 9,4 1 965 Jo Platt (sortant) Travailliste 19 301 41,08 % −15,...

 

 

Constantin VIII Empereur byzantin Constantin VIII Règne Co-empereur : 962 - 15 décembre 1025 Empereur : 15 décembre 1025 - 11 novembre 1028 2 ans, 10 mois et 27 jours Période Macédonienne Précédé par Basile II Co-empereur Romain II (962-963) Basile II (962-1025) Nicéphore II Phocas (963-969) Jean Ier Tzimiskès (969-976) Suivi de Zoé Porphyrogénète Romain III Argyre Biographie Naissance vers 960 (probablement Didymotique ou Constantinople) Décès 11 nove...

American television game show This article is about the American game show. For other uses, see Joker's Wild (disambiguation). The Joker's WildAlso known asJoker! Joker!! Joker!!!Created byJack BarryDirected byRichard S. Kline[1]D.A. DianaRich DiPirroPresented byJack BarryBill CullenPat FinnSnoop DoggNarrated byJohnny JacobsJay StewartCharlie O'DonnellEd MacKayDave BurchellTheme music composerPerrey and KingsleyHal HideyAlan ThickeJoe Manolakakis[1]Country of originUnited Stat...

 

 

Pour les articles homonymes, voir ENSTA (homonymie). École nationale supérieure de techniques avancéesHistoireFondation 1741StatutType École d'ingénieurs et EPSCP-GEForme juridique Établissement public national à caractère scientifique culturel et professionnel (d)Nom officiel ENSTA ParisRégime linguistique FrançaisFondateur Henri Louis Duhamel du MonceauPrésident Laurent Giovachini (depuis 2020)Directeur Élisabeth CréponMembre de Institut Polytechnique de Paris, CGE, CDEFI, Pro...

 

 

Italian football club Football clubA.C.D. Castel di Sangro Cep 1953Full nameAssociazione Calcistica Dilettantistica Castel di Sangro Cep 1953Nickname(s)Giallorossi (Yellow-reds), Sangrini, Castello (Castle), CastelsangroFounded19532005 (refounded)2012 (refounded)GroundStadio Teofilo Patini,Castel di Sangro, ItalyCapacity7,220ChairmanGiuseppe SantostefanoManagerDomenico CristianoLeagueEccellenza Molise2020–21Eccellenza Molise, 7th Home colours Away colours Castel di Sangro Cep is an Italian ...

Overview of Hungary at the FIFA World Cup Hungary lining up for their semi-final match against Uruguay at the 1954 FIFA World Cup in Lausanne. The FIFA World Cup is an international association football competition contested by the men's national teams of the members of Fédération Internationale de Football Association (FIFA), the sport's global governing body. The championship has been awarded every four years since the first tournament in 1930, except in 1942 and 1946, due to World War II...

 

 

Radio station in Hammond, IndianaWJOBHammond, IndianaBroadcast areaChicago metropolitan areaFrequency1230 kHzBrandingAM-1230 WJOBProgrammingFormatTalk - Brokered programmingAffiliationsPremiere NetworksRegional Radio Sports NetworkOwnershipOwnerVazquez Development, LLCHistoryFirst air date1923Former call signsWWAE (1923-1940)Technical information[1]Licensing authorityFCCFacility ID12219ClassC (AM)D (FM)Power1,000 wattsERP250 watts (FM)HAAT119 meters (390 ft) (FM)Transmitter coord...

 

 

Cypriot singer-songwriter Alexia VassiliouBorn (1964-02-05) 5 February 1964 (age 60)Famagusta, CyprusNationalityCyprusEducationBerklee College of MusicOccupationsingerKnown for40 years of entertaining including twice at Eurovision Alexia Vassiliou (Greek: Αλεξία Βασιλείου; born 5 February 1964) is a Cypriot singer-songwriter. She has represented her country in the Eurovision contest in 1981 and 1987. She became a refugee at age ten and still gives concerts for the Uni...

Ilmari Nurminen Ilmari Nurminen 2016. Ledamot av Finlands riksdag Innehar befattningen Tillträdde befattningen 2015 Valkrets Birkaland Född 24 februari 1991 (33 år)Vammala Politiskt parti Socialdemokraterna Webbplats http://ilmarinurminen.fi/ Ilmari Taisto Nurminen, född 24 februari 1991 i Vammala, är en finländsk socialdemokratisk politiker. Han är ledamot av Finlands riksdag sedan 2015.[1] Nurminen blev invald i riksdagsvalet 2015 med 5 079 röster från Birkalan...

 

 

Interdisciplinary academic field This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (August 2021) Men's studies is an interdisciplinary academic field devoted to topics concerning men, masculinity, gender, culture, politics and sexuality. It academically examines what it means to be a man in contemporary society.[1] Origins This section needs ...

 

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

The Scent of Green PapayaSutradaraTran Anh HungProduserChristophe RossignonDitulis olehTran Anh HungPenata musikTôn-Thât TiêtSinematograferBenoît DelhommePenyuntingNicole DedieuJean-Pierre RoquesDistributorPrésident FilmsTanggal rilis8 Juni 1993Durasi104 menitNegaraPrancisBahasaVietnamPendapatankotor$1,700,992[1] The Scent of Green Papaya (Vietnam: Mùi đu đủ xanh, Prancis: L'Odeur de la papaye verte) merupakan suatu film berbahasa Vietnam 1993 yang diproduksi di Pranci...

 

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Songs of Europe 1981 concert – news · newspapers · books · scholar · JSTOR (August 2012) (Learn how and when to remove this message) Songs of EuropeDatesAir date22 August 1981HostVenueMomarken, Mysen, NorwayPresenter(s)Rolf KirkvaagTitten TeiMusical direct...

 

 

County-like political entities in Quebec, Canada For a list of Quebec's regional county municipalities, see List of regional county municipalities and equivalent territories in Quebec. Not to be confused with county-level city, county, county municipality, regional municipality, rural municipality, or local government.Regional county municipalities of QuebecAlso known as:Municipalités régionales de comté du QuébecLocationProvince of QuebecNumber87Populations7,082 (L'Île-d'Orléans) – 1...

لحدادشة تقسيم إداري البلد المغرب  الجهة الرباط سلا القنيطرة الإقليم سيدي قاسم الدائرة تلال الغرب الجماعة القروية سيدي أحمد بنعيسى المشيخة سيدي قاسم بن جميل السكان التعداد السكاني 135 نسمة (إحصاء 2004)   • عدد الأسر 19 معلومات أخرى التوقيت ت ع م±00:00 (توقيت قياسي)[1]،  �...

 

 

Church in Woodrow Road at Bishop Eddie L. Long Parkway Stonecrest, United StatesNew Birth Missionary Baptist ChurchNew Birth MBC in 2017Location6400 Woodrow Road at Bishop Eddie L. Long Parkway StonecrestCountry United StatesMembership10,000Websitenewbirth.orgHistoryFounded(1939); 1983ClergySenior pastor(s)Eddie Long (1987 - 2017) Jamal Harrison Bryant New Birth Missionary Baptist Church is a charismatic Christian Baptist megachurch in Stonecrest, DeKalb County, Georgia. Its senior past...

 

 

Disused railway station in Abermule, Powys AbermuleAbermule railway station in 1953General informationLocationAbermule, PowysWalesPlatforms3Other informationStatusDisusedHistoryOriginal companyOswestry and Newtown RailwayPre-groupingCambrian RailwaysPost-groupingGreat Western RailwayKey dates14 August 1860[1]Opened14 June 1965[1]Closed Remains of the station in 1994 Abermule railway station served the village of Abermule (Abermiwl in Welsh) in Wales. Served by the Oswestry and...

Cinema in the UK BFI Southbank BFI Southbank (from 1951 to 2007, known as the National Film Theatre) is the leading repertory cinema in the UK, specialising in seasons of classic, independent and non-English language films. It is operated by the British Film Institute. Forbes called its largest cinema, NFT1, one of the crown jewels of the London film scene.[1] History Old NFT logo The National Film Theatre was initially opened in a temporary building (the Telecinema) at the Festival o...

 

 

Bataille de Ligny La bataille de Ligny par Ernest Crofts. Informations générales Date 16 juin 1815 Lieu Ligny (Belgique) Issue Victoire française Belligérants Empire français Royaume de Prusse Commandants Napoléon Ier Gebhard von Blücher Forces en présence 3 corps d'armée (moins de 60 000 hommes) 90 000 à 95 000 hommes Pertes 8 000-12 000 tués ou blessés 12 000 tués ou blessés 8 000 déserteurs Campagne des Cent-JoursS...