The clinical phenotypes of CMAMMA are highly heterogeneous and range from asymptomatic, mild to severe symptoms.[6][7] The underlying pathophysiology is not yet understood.[3] The following symptoms are reported in the literature:
When the first symptoms appear in childhood, they are more likely to be intermediary metabolic disorders, whereas in adults they are usually neurological symptoms.[4][7]
ACSF3 encodes an acyl-CoA synthetase, which is localized in the mitochondria and has a high specificity for malonic acid and methylmalonic acid.[9] It is responsible as malonyl-CoA synthetase for the conversion of malonic acid into malonyl-CoA and as methylmalonyl-CoA synthetase for the conversion of methylmalonic acid into methylmalonyl-CoA.[10]
However, despite their high energy demand, neural cells are not able to use fatty acids efficiently for energy production, with the exception of glial cells and specialized neurons in the hypothalamus.[13] Nevertheless, there is a close metabolic interaction between glial cells in the form of astrocytes and neurons to maintain cellular functionality.[13] It is therefore speculated that CMAMMA also leads to an upregulation of β-oxidation in brain cells, resulting in an increased risk of hypoxia and oxidative stress, which may contribute to neurological symptoms in the long term.[13]
Furthermore, there are also massive changes in the cellular complex lipids, such as increased levels of bioactive lipids like sphingomyelins and cardiolipins, as well as triacylglycerides, which are additionally accompanied by altered fatty acid chain length and the presence of odd chain species.[3] In contrast, phosphatidylcholines, phosphatidylglycerols and ceramides are reduced, the latter proportionally to the increase of sphingomyelins.[3] In addition, there is a significantly lower incorporation of malonate into lipids, which indicates that ACSF3 is required for malonate metabolism.[12]
Defect of methylmalonic acid degradation (methylmalonic aciduria)
ACSF3, in its function as methylmalonyl-CoA synthetase, catalyzes the conversion of methylmalonic acid into methylmalonyl-CoA so that it can be degraded via the citric acid cycle.
Bacterial fermentation in the gut is a quantitatively significant source of propionic acid, which is a precursor for methylmalonic acid.[16][17] Alongside this, propionic acid is also absorbed through the diet, as it is naturally present in certain foods or is added as a preservative by the food industry, especially in baked goods[18] and dairy products.[19]
In addition, methylmalonic acid is formed during catabolism of thymine.[16][17]
However, intracellular esterases are also capable of cleaving the methyl group of methylmalonic acid and generating the parent molecule malonic acid.[20]
In vitro, a connection between free methylmalonic acid and malonic acid to neurotoxicity could be established.[21][20]
Diagnosis
Due to a wide range of clinical symptoms and largely slipping through newborn screening programs, CMAMMA is thought to be an under-recognized condition.[1][2]
Newborn screening programs
Because CMAMMA does not result in accumulation of methylmalonyl-CoA, malonyl-CoA, or propionyl-CoA, nor are abnormalities seen in the acylcarnitine profile, CMAMMA is not detected by standard blood-based newborn screening programs.[7][4][2]
A special case is the province of Quebec, which, in addition to the blood test, also screens urine on the 21st day after birth with the Quebec Neonatal Blood and Urine Screening Program, although it is likely that not everyone with CMAMMA will be detected.[22][7]
Routine and biochemical labs
CMAMMA has elevated methylmalonic acid levels, but these are much lower compared to methylmalonic acidemias of the types mut0, mut-, cblA, cblB and cblDv2.[23] However, methylmalonic acid levels exceed those of malonic acid (MMA/MA >5).[8][23] By calculating the methylmalonic acid/malonic acid ratio in blood plasma, CMAMMA can be clearly distinguished from a classic methylmalonic acidemia.[1] This is true for both, vitamin B12 responders and non-responders forms of methylmalonic acidemia.[1] The use of malonic acid values and methylmalonic acid values from urine is not suitable for calculating this ratio.[1] In malonic aciduria, the MMA/MA ratio is less than 1.[8]
In CMAMMA, the homocysteine level is in the normal range.[23] In addition, CMAMMA is unresponsive to vitamin B12 in vivo.[23]
Molecular genetic testing
The final diagnosis is confirmed by molecular genetic testing if biallelic pathogenic variants are found in ACSF3 gene. There are specific multigene panels for methylmalonic acidemias, but the particular genes tested may vary from laboratory to laboratory and can be customized by the clinician to the individual phenotype.[23][24]
Extended carrier screening (ECS) in the course of fertility treatment can also identify carriers of mutations in the ACSF3 gene.[25]
Treatments
Dietary
One approach to reduce the accumulating amount of malonic acid and methylmalonic acid is diet. According to the state of knowledge in 1998, a high-carbohydrate and low-protein diet is recommended.[8] Changes in malonic acid and methylmalonic acid excretion can be seen as early as 24-36 h after a change in diet.[8]
Bacteria-reducing measures
Another quantitatively significant source of malonic acid and methylmalonic acid, in addition to dietary protein intake, is bacterial fermentation.[16][17] This leads to treatment measures such as the administration of antibiotics and laxatives.
Vitamin B12
Since some methylmalonic acidemias respond to vitamin B12, treatment attempts in CMAMMA with vitamin B12 have been made, also in the form of hydroxocobalamin injections, which, however did not lead to any clinical or biochemical effects.[2]
L-Carnitine
One study also mentions treatment with L-carnitine in patients with CMAMMA, but only retrospectively and without mentioning results.[2]
mRNA therapeutics
Preclinical proof of concept studies in animal models have shown that mRNA therapy is also suitable for use in rare metabolic diseases.[26] In this context, the mut methylmalonic acidemia therapy candidate mRNA-3705 from the biotechnology company Moderna, which is currently in phase 1/2, is worth mentioning.[27]
Research
In 1984, CMAMMA due to malonyl-CoA decarboxylase deficiency was described for the first time in a scientific study.[28][8] Further studies on this form of CMAMMA followed until 1994, when another form of CMAMMA with normal malonyl-CoA decarboxylase activity was discovered.[29][8] In 2011, genetic research through exome sequencing identified the ACSF3 gene as a cause of CMAMMA with normal malonyl-CoA decarboxylase.[4][7] With a study published in 2016, calculation of the MA/MAA ratio in plasma presented a new possibility for rapid, metabolic diagnosis of CMAMMA.[1]
The Quebec Neonatal Blood and Urine Screening Program makes Quebec province interesting for CMAMMA research, as it represents the only patient cohort in the world without selection bias.[2] Between 1975 and 2010, an estimated 2 695 000 newborns were thus screened, with 3 detections of CMAMMA.[7] However, based on this lower detection rate to the predicted rate by heterozygous frequencies, it is likely that not all newborns with this biochemical phenotype were detected by the screening program.[7] A 2019 study then identified as many as 25 CMAMMA patients in the province of Quebec.[2] All but one came to clinical attention through the Provincial Neonatal Urine Screening Program, 20 of them directly and 4 after the diagnosis of an older sibling.[2]
Phenotypic series
The following diseases also have biochemically elevated levels of malonic acid and methylmalonic acid:
The term combined malonic and methylmalonic aciduria with the suffix -uria (from Greek ouron, urine) has become established in the scientific literature in contrast to the other term combined malonic and methylmalonic acidemia with the suffix -emia (from Greek aima, blood). However, in the context of CMAMMA, no clear distinction is made, since malonic acid and methylmalonic acid are elevated in both blood and urine.
In malonic aciduria, malonic acid and methylmalonic acid are also elevated, which is why it used to be called combined malonic and methylmalonic aciduria. Although ACSF3 deficiency was not discovered until later, the term combined malonic and methylmalonic aciduria has now become established in medical databases for ACSF3 deficiency.[30][31]
References
^ abcdefgDe Sain-Van Der Velden, Monique G. M.; Van Der Ham, Maria; Jans, Judith J.; Visser, Gepke; Prinsen, Hubertus C. M. T.; Verhoeven-Duif, Nanda M.; Van Gassen, Koen L. I.; Van Hasselt, Peter M. (2016). "A New Approach for Fast Metabolic Diagnostics in CMAMMA". JIMD Reports, Volume 30. Vol. 30. pp. 15–22. doi:10.1007/8904_2016_531. ISBN978-3-662-53680-3. PMC5110436. PMID26915364.
^ abcRosenberg LE (1983). "Disorders of propionate and methylmalonate metabolism". In Stanbury JB, Wyngaarden JB, Frederickson DS (eds.). The metabolic Basis of Inherited Disease (5th ed.). New York. pp. 474–497.{{cite book}}: CS1 maint: location missing publisher (link)