Lipid signaling, broadly defined, refers to any biological cell signaling event involving a lipid messenger that binds a protein target, such as a receptor, kinase or phosphatase, which in turn mediate the effects of these lipids on specific cellular responses. Lipid signaling is thought to be qualitatively different from other classical signaling paradigms (such as monoamineneurotransmission) because lipids can freely diffuse through membranes (see osmosis). One consequence of this is that lipid messengers cannot be stored in vesicles prior to release and so are often biosynthesized "on demand" at their intended site of action. As such, many lipid signaling molecules cannot circulate freely in solution but, rather, exist bound to special carrier proteins in serum.
Ceramide contains two hydrophobic ("water-fearing") chains and a neutral headgroup. Consequently, it has limited solubility in water and is restricted within the organelle where it was formed. Also, because of its hydrophobic nature, ceramide readily flip-flops across membranes as supported by studies in membrane models and membranes from red blood cells (erythrocytes).[6] However, ceramide can possibly interact with other lipids to form bigger regions called microdomains which restrict its flip-flopping abilities. This could have immense effects on the signaling functions of ceramide because it is known that ceramide generated by acidic SMase enzymes in the outer leaflet of an organelle membrane may have different roles compared to ceramide that is formed in the inner leaflet by the action of neutral SMase enzymes.[7]
Ceramide mediates many cell-stress responses, including the regulation of programmed cell death (apoptosis) [8] and cell aging (senescence).[9] Numerous research works have focused interest on defining the direct protein targets of action of ceramide. These include enzymes called ceramide-activated Ser-Thr phosphatases (CAPPs), such as proteinphosphatase 1 and 2A (PP1 and PP2A), which were found to interact with ceramide in studies done in a controlled environment outside of a living organism (in vitro).[10] On the other hand, studies in cells have shown that ceramide-inducing agents such as tumor necrosis factor-alpha α (TNFα) and palmitate induce the ceramide-dependent removal of a phosphate group (dephosphorylation) of the retinoblastomagene product RB[11] and the enzymes, protein kinases B (AKT protein family) and C α (PKB and PKCα).[12] Moreover, there is also sufficient evidence which implicates ceramide to the activation of the kinase suppressor of Ras (KSR),[13] PKCζ,[14][15] and cathepsin D.[16]Cathepsin D has been proposed as the main target for ceramide formed in organelles called lysosomes, making lysosomal acidic SMase enzymes one of the key players in the mitochondrial pathway of apoptosis. Ceramide was also shown to activate PKCζ, implicating it to the inhibition of AKT, regulation of the voltage difference between the interior and exterior of the cell (membrane potential) and signaling functions that favor apoptosis.[17]Chemotherapeutic agents such as daunorubicin and etoposide[18][19] enhance the de novo synthesis of ceramide in studies done on mammalian cells. The same results were found for certain inducers of apoptosis particularly stimulators of receptors in a class of lymphocytes (a type of white blood cell) called B-cells.[20] Regulation of the de novo synthesis of ceramide by palmitate may have a key role in diabetes and the metabolic syndrome. Experimental evidence shows that there is substantial increase of ceramide levels upon adding palmitate. Ceramide accumulation activates PP2A and the subsequent dephosphorylation and inactivation of AKT,[21] a crucial mediator in metabolic control and insulinsignaling. This results in a substantial decrease in insulin responsiveness (i.e. to glucose) and in the death of insulin-producing cells in the pancreas called islets of Langerhans.[22] Inhibition of ceramide synthesis in mice via drug treatments or gene-knockout techniques prevented insulin resistance induced by fatty acids, glucocorticoids or obesity.[23]
Ceramide transfer protein (CERT) transports ceramide from ER to the Golgi for the synthesis of SM.[25] CERT is known to bind phosphatidylinositol phosphates, hinting its potential regulation via phosphorylation, a step of the ceramide metabolism that can be enzymatically regulated by protein kinases and phosphatases, and by inositollipid metabolic pathways.[26] Up to date, there are at least 26 distinct enzymes with varied subcellular localizations, that act on ceramide as either a substrate or product. Regulation of ceramide levels can therefore be performed by one of these enzymes in distinct organelles by particular mechanisms at various times.[27]
Sphingosine
Sphingosine (Sph) is formed by the action of ceramidase (CDase) enzymes on ceramide in the lysosome. Sph can also be formed in the extracellular (outer leaflet) side of the plasma membrane by the action of neutral CDase enzyme. Sph then is either recycled back to ceramide or phosphorylated by one of the sphingosine kinase enzymes, SK1 and SK2.[28] The product sphingosine-1-phosphate (S1P) can be dephosphorylated in the ER to regenerate sphingosine by certain S1P phosphatase enzymes within cells, where the salvaged Sph is recycled to ceramide.[29]Sphingosine is a single-chain lipid (usually 18 carbons in length), rendering it to have sufficient solubility in water. This explains its ability to move between membranes and to flip-flop across a membrane. Estimates conducted at physiological pH show that approximately 70% of sphingosine remains in membranes while the remaining 30% is water-soluble.[30] Sph that is formed has sufficient solubility in the liquid found inside cells (cytosol). Thus, Sph may come out of the lysosome and move to the ER without the need for transport via proteins or membrane-enclosed sacs called vesicles. However, its positive charge favors partitioning in lysosomes. It is proposed that the role of SK1 located near or in the lysosome is to ‘trap’ Sph via phosphorylation.[31]
Since sphingosine exerts surfactant activity, it is one of the sphingolipids found at lowest cellular levels.[31] The low levels of Sph and their increase in response to stimulation of cells, primarily by activation of ceramidase by growth-inducing proteins such as platelet-derived growth factor and insulin-like growth factor, is consistent with its function as a second messenger. It was found that immediate hydrolysis of only 3 to 10% of newly generated ceramide may double the levels of Sph.[31] Treatment of HL60 cells (a type of leukemia cell line) by a plant-derived organic compound called phorbol ester increased Sph levels threefold, whereby the cells differentiated into white blood cells called macrophages. Treatment of the same cells by exogenous Sph caused apoptosis. A specific protein kinase phosphorylates 14-3-3, otherwise known as sphingosine-dependent protein kinase 1 (SDK1), only in the presence of Sph.[32]
Sph is also known to interact with protein targets such as the protein kinase H homologue (PKH) and the yeast protein kinase (YPK). These targets in turn mediate the effects of Sph and its related sphingoid bases, with known roles in regulating the actincytoskeleton, endocytosis, the cell cycle and apoptosis.[33] It is important to note however that the second messenger function of Sph is not yet established unambiguously.[34]
S1P is probably formed at the inner leaflet of the plasma membrane in response to TNFα and other receptor activity-altering compounds called agonists.[36][37] S1P, being present in low nanomolar concentrations in the cell, has to interact with high-affinity receptors that are capable of sensing their low levels. So far, the only identified receptors for S1P are the high-affinity G protein-coupled receptors (GPCRs), also known as S1P receptors (S1PRs). S1P is required to reach the extracellular side (outer leaflet) of the plasma membrane to interact with S1PRs and launch typical GPCR signaling pathways.[38][39] However, the zwitterionic headgroup of S1P makes it unlikely to flip-flop spontaneously. To overcome this difficulty, the ATP-binding cassette (ABC) transporter C1 (ABCC1) serves as the "exit door" for S1P.[40] On the other hand, the cystic fibrosis transmembrane regulator (CFTR) serves as the means of entry for S1P into the cell.[41] In contrast to its low intracellular concentration, S1P is found in high nanomolar concentrations in serum where it is bound to albumin and lipoproteins.[42] Inside the cell, S1P can induce calcium release independent of the S1PRs—the mechanism of which remains unknown. To date, the intracellular molecular targets for S1P are still unidentified.[31]
The SK1-S1P pathway has been extensively studied in relation to cytokine action, with multiple functions connected to effects of TNFα and IL-1 favoring inflammation. Studies show that knockdown of key enzymes such as S1P lyase and S1P phosphatase increased prostaglandin production, parallel to increase of S1P levels.[37] This strongly suggests that S1P is the mediator of SK1 action and not subsequent compounds. Research done on endothelial and smooth muscle cells is consistent to the hypothesis that S1P has a crucial role in regulating endothelial cell growth, and movement.[43] Recent work on a sphingosine analogue, FTY270, demonstrates its ability to act as a potent compound that alters the activity of S1P receptors (agonist). FTY270 was further verified in clinical tests to have roles in immune modulation, such as that on multiple sclerosis.[44] This highlights the importance of S1P in the regulation of lymphocyte function and immunity. Most of the studies on S1P are used to further understand diseases such as cancer, arthritis and inflammation, diabetes, immune function and neurodegenerative disorders.[31]
Glucosylceramide
Glucosylceramides (GluCer) are the most widely distributed glycosphingolipids in cells serving as precursors for the formation of over 200 known glycosphingolipids. GluCer is formed by the glycosylation of ceramide in an organelle called Golgi via enzymes called glucosylceramide synthase (GCS) or by the breakdown of complex glycosphingolipids (GSLs) through the action of specific hydrolase enzymes. In turn, certain β-glucosidases hydrolyze these lipids to regenerate ceramide.[45][46] GluCer appears to be synthesized in the inner leaflet of the Golgi. Studies show that GluCer has to flip to the inside of the Golgi or transfer to the site of GSL synthesis to initiate the synthesis of complex GSLs. Transferring to the GSL synthesis site is done with the help of a transport protein known as four phosphate adaptor protein 2 (FAPP2) while the flipping to the inside of the Golgi is made possible by the ABC transporter P-glycoprotein, also known as the multi-drug resistance 1 transporter (MDR1).[47] GluCer is implicated in post-Golgi trafficking and drug resistance particularly to chemotherapeutic agents.[48][49] For instance, a study demonstrated a correlation between cellular drug resistance and modifications in GluCer metabolism.[50]
In addition to their role as building blocks of biological membranes, glycosphingolipids have long attracted attention because of their supposed involvement in cell growth, differentiation, and formation of tumors.[31] The production of GluCer from Cer was found to be important in the growth of neurons or brain cells.[51] On the other hand, pharmacological inhibition of GluCer synthase is being considered a technique to avoid insulin resistance.[52]
Ceramide-1-Phosphate
Ceramide-1-phosphate (C1P) is formed by the action of ceramide kinase (CK) enzymes on Cer. C1P carry ionic charge at neutral pH and contain two hydrophobic chains making it relatively insoluble in aqueous environment. Thus, C1P reside in the organelle where it was formed and is unlikely to spontaneously flip-flop across membrane bilayers.[31]
PIP2 binds directly to ion channels and modulates their activity. PIP2 was shown to directly agonizes Inward rectifying potassium channels(Kir).[58] In this regard intact PIP2 signals as a bona fide neurotransmitter-like ligand.[59] PIP2's interaction with many ion channels suggest that the intact form of PIP2 has an important signaling role independent of second messenger signaling.[citation needed]
Second messengers from phosphatidylinositol
Phosphatidylinositol bisphosphate (PIP2) Second Messenger Systems
A general second messenger system mechanism can be broken down into four steps. First, the agonist activates a membrane-bound receptor. Second, the activated G-protein produces a primary effector. Third, the primary effect stimulates the second messenger synthesis. Fourth, the second messenger activates a certain cellular process.
IP3 is soluble and diffuses freely into the cytoplasm. As a second messenger, it is recognized by the inositol triphosphate receptor (IP3R), a Ca2+ channel in the endoplasmic reticulum (ER) membrane, which stores intracellular Ca2+. The binding of IP3 to IP3R releases Ca2+ from the ER into the normally Ca2+-poor cytoplasm, which then triggers various events of Ca2+ signaling. Specifically in blood vessels, the increase in Ca2+ concentration from IP3 releases nitric oxide, which then diffuses into the smooth muscle tissue and causes relaxation.[34]
DAG remains bound to the membrane by its fatty acid "tails" where it recruits and activates both conventional and novel members of the protein kinase C family. Thus, both IP3 and DAG contribute to activation of PKCs.[60][61]
S1P is present at high concentrations in plasma and secreted locally at elevated concentrations at sites of inflammation. It is formed by the regulated phosphorylation of sphingosine. It acts through five dedicated high-affinity G-protein coupled receptors, S1P1 - S1P5. Targeted deletion of S1P1 results in lethality in mice and deletion of S1P2 results in seizures and deafness. Additionally, a mere 3- to 5-fold elevation in serum S1P concentrations induces sudden cardiac death by an S1P3-receptor specific mechanism.
Platelet activating factor (PAF)
PAF is a potent activator of platelet aggregation, inflammation, and anaphylaxis. It is similar to the ubiquitous membrane phospholipidphosphatidylcholine except that it contains an acetyl-group in the SN-2 position and the SN-1 position contains an ether-linkage. PAF signals through a dedicated G-protein coupled receptor, PAFR and is inactivated by PAF acetylhydrolase.
Endocannabinoids
The endogenous cannabinoids, or endocannabinoids, are endogenous lipids that activate cannabinoid receptors. The first such lipid to be isolated was anandamide which is the arachidonoyl amide of ethanolamine. Anandamide is formed via enzymatic release from N-arachidonoyl phosphatidylethanolamine by the N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD).[62] Anandamide activates both the CB1 receptor, found primarily in the central nervous system, and the CB2 receptor which is found primarily in lymphocytes and the periphery. It is found at very low levels (nM) in most tissues and is inactivated by the fatty acid amide hydrolase. Subsequently, another endocannabinoid was isolated, 2-arachidonoylglycerol, which is produced when phospholipase C releases diacylglycerol which is then converted to 2-AG by diacylglycerol lipase. 2-AG can also activate both cannabinoid receptors and is inactivated by monoacylglycerol lipase. It is present at approximately 100-times the concentration of anandamide in most tissues. Elevations in either of these lipids causes analgesia and anti-inflammation and tissue protection during states of ischemia, but the precise roles played by these various endocannabinoids are still not totally known and intensive research into their function, metabolism, and regulation is ongoing. One saturated lipid from this class, often called an endocannabinoid, but with no relevant affinity for the CB1 and CB 2 receptor is palmitoylethanolamide. This signaling lipid has great affinity for the GRP55 receptor and the PPAR alpha receptor. It has been identified as an anti-inflammatory compound already in 1957, and as an analgesic compound in 1975. Rita Levi-Montalcini first identified one of its biological mechanisms of action, the inhibition of activated mast cells. Palmitoylethanolamide is the only endocannabinoid available on the market for treatment, as a food supplement.
FAHFAs (fatty acid esters of hydroxy fatty acids) are formed in adipose tissue, improve glucose tolerance and also reduce adipose tissue inflammation. Palmitic acid esters of hydroxy-stearic acids (PAHSAs) are among the most bioactive members able to activate G-protein coupled receptors 120.[63] Docosahexaenoic acid ester of hydroxy-linoleic acid (DHAHLA) exert anti-inflammatory and pro-resolving properties.[64]
^Marchesini, N.; Hannun, Y. A. (2004). "Acid and neutral sphingomyelinases: roles and mechanisms of regulation". Biochem. Cell Biol. 82 (1): 27–44. doi:10.1139/o03-091. PMID15052326.
^Obeid, L. M., Linardic, C. M., Karolak, L. A. & Hannun, Y. A. (1993) Programmed cell death induced by ceramide. Science. 259, 1769–1771 .
^Hamaguchi, A.; et al. (2003). "A sphingosine-dependent protein kinase that specifically phosphorylates 14-3-3 (SDK1) is identified as the kinase domain of PKC: a preliminary note. Biochemical and". Biophys. Res. Comm. 307 (3): 589–594. doi:10.1016/S0006-291X(03)01070-2. PMID12893264.
^Smith, E. R.; Merrill, A. H.; Obeid, L. M.; Hannun, Y. A. (2000). "Effects of Sphingosine and Other Sphingolipids on Protein Kinase C". Sphingolipid Metabolism and Cell Signaling, Part B. Methods in Enzymology. Vol. 312. pp. 361–373. doi:10.1016/S0076-6879(00)12921-0. ISBN9780121822132. PMID11070884.
^Bandhuvula, P.; Saba, J. D. (2007). "Sphingosine-1-phosphate lyase in immunity and cancer: silencing the siren". Trends Mol. Med. 13 (5): 210–217. doi:10.1016/j.molmed.2007.03.005. PMID17416206.
^Taha, T. A.; Argraves, K. M.; Obeid, L. M. (2004). "Sphingosine-1-phosphate receptors: receptor specificity versus functional redundancy". Biochim. Biophys. Acta. 1682 (1–3): 48–55. doi:10.1016/j.bbalip.2004.01.006. PMID15158755.
^Okajima, F. (2002). "Plasma lipoproteins behave as carriers of extracellular sphingosine 1-phosphate: is this an atherogenic mediator or an anti-atherogenic mediator?". Biochim. Biophys. Acta. 1582 (1–3): 132–137. doi:10.1016/s1388-1981(02)00147-6. PMID12069820.
^Peters, S. L.; Alewijnse, A. E. (2007). "Sphingosine-1-phosphate signaling in the cardiovascular system". Current Opinion in Pharmacology. 7 (2): 186–192. doi:10.1016/j.coph.2006.09.008. PMID17280869.
^Radin, N. S., Shayman, J.A. & Inokuchi, J.-I. Metabolic effects of inhibiting glucosylceramide synthesis with PDMP and other substances. Adv. Lipid Res.26, 183–211
A Viognier-Roussanne blend from the Côtes du Rhône AOC produced by Jean-Luc Colombo. Jean-Luc Colombo is a French wine producer and negociant in the Rhône Valley. While Colombo produces several Appellation d'Origine Contrôlée (AOC) wines in the Rhône, such as Châteauneuf-du-Pape and Hermitage, he is most noted for being a pioneer in the revitalization of the Cornas wine region.[1] In reference to a Remington Norman quote about the need for a media star to bring attention to the...
2005 soundtrack album by A. R. RahmanRang De BasantiSoundtrack album by A. R. RahmanReleased8 December 2005RecordedPanchathan Record InnAM StudiosGenreFilm soundtrackLength44:00LabelSony BMGProducerA. R. RahmanA. R. Rahman chronology 'Water'(2005) Rang De Basanti(2006) 'Sillunu Oru Kaadhal'(2006) Professional ratingsReview scoresSourceRatingPlanet Bollywood The soundtrack to the 2006 film Rang De Basanti was released by Sony Music Entertainment on 8 December 2005 and had its music co...
العلاقات اليابانية الدومينيكية اليابان دومينيكا اليابان دومينيكا تعديل مصدري - تعديل العلاقات اليابانية الدومينيكية هي العلاقات الثنائية التي تجمع بين اليابان ودومينيكا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتي�...
Салоникский фронт Первой мировой войныОсновной конфликт: Первая мировая война Войска Антанты. Слева направо: солдаты из Индокитая, Франции, Сенегала, Британии, Российской империи, Италии, Сербии, Греции и Индии. Дата 27 октября 1915 — ноябрь 1918 Место Сербия, Черногория, Грец�...
Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: William Barr – berita · surat kabar · buku · cendekiawan · JSTOR William Barr Jaksa Agung Amerika SerikatMasa jabatan14 Februari 2019 – 23 Desember 2020PresidenDonald Trump PendahuluJeff Sessi...
Ikan tikusRentang fosil: 58.5–0 jtyl PreЄ Є O S D C P T J K Pg N Akhir Paleosen - sekarang Corydoras melanotaenia Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Animalia Filum: Chordata Kelas: Actinopterygii Ordo: Siluriformes Famili: Callichthyidae Tribus: CorydoradiniHoedeman, 1952 Genus: CorydorasLacépède, 1803 Spesies tipe Corydoras geoffroyLacépède, 1803 Spesies Lihat teks Sinonim Brochis Cope, 1871 Chaenothorax Cope, 1878 Cordorinus Rafinesque, 1815 Gastrodermus Cope, 1878...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Economic history of Ireland – news · newspapers · books · scholar · JSTOR (July 2009) (Learn how and when to remove this message) Part of a series on the History of Ireland Chronology Prehistory Protohistory 400–795 795–1169 1169–1536 1536–1691 1691–...
Dutch association football player Jaïro Riedewald Riedewald lining up for Ajax in 2016Personal informationFull name Jaïro Jocquim Riedewald[1]Date of birth (1996-09-09) 9 September 1996 (age 27)Place of birth Haarlem, NetherlandsHeight 1.82 m (6 ft 0 in)[2]Position(s) Defensive midfielder, defenderTeam informationCurrent team Crystal PalaceNumber 44Youth career SV Overbos2007–2014 AjaxSenior career*Years Team Apps (Gls)2013–2017 Jong Ajax 19 (1)2013�...
Galaxy in the constellation Triangulum NGC 940SDSS image of NGC 940Observation data (J2000 epoch)ConstellationTriangulumRight ascension02h 29m 27.51472s[1]Declination+31° 38′ 27.5640″[1]Redshift0.017172[2]Heliocentric radial velocity5104 km/s[2]Distance221.6 Mly (67.93 Mpc)[3]Apparent magnitude (B)13.4[2]CharacteristicsTypeS0[2]Other designationsUGC 1964, MCG +05-06-050, PGC 9478[2] NGC 9...
School in New York City, USA This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help improve it by replacing them with more appropriate citations to reliable, independent, third-party sources. (October 2016) (Learn how and when to remove this message) Trevor Day School is an independent day school in New York City in the borough of Manhattan. Upper Day School (2019) History It was f...
Flying Training School of the Royal Air Force For other uses, see 1 FTS. No. 1 Flying Training School redirects here. For the Australian training school, see No. 1 Flying Training School RAAF. No. 1 Flying Training School RAFUnit badgeActive23 December 1919 (1919-12-23) – 1 February 19311 April 1935 – 7 March 194218 June 1947 – 25 February 19481 December 1950 – 20 April 19551 May 1955 – 20192020 – presentCountry United KingdomBranch Royal Air ForceTypeFlying tr...
Len Len zwyczajny Systematyka[1][2] Domena eukarionty Królestwo rośliny Podkrólestwo rośliny zielone Nadgromada rośliny telomowe Gromada rośliny naczyniowe Podgromada rośliny nasienne Nadklasa okrytonasienne Klasa Magnoliopsida Nadrząd różopodobne Rząd malpigiowce Rodzina lnowate Rodzaj len Nazwa systematyczna Linum L.Sp. Pl. 277. 1 Mai 1753[3] Typ nomenklatoryczny L. usitatissimum L.[3] Synonimy Adenolinum Rchb. Alsolinum Fourr. Cathartolinum Rchb. Chrysolinum Fourr. Cliococca Ba...
Mountain in Israel Mount Gilboa, 2007 Scenery on Mount Gilboa Mount Gilboa (Hebrew: הַר הַגִּלְבֹּעַ, romanized: Har hagGīlbōaʿ; Arabic: جبل جلبوع Jabal Jalbūʿ or جبل فقوعة Jabal Fuqqāʿa), sometimes referred to as the Mountains of Gilboa, is the name for a mountain range in Israel. It overlooks the Harod Valley (the eastern part of the larger Jezreel Valley) to the north, and the Jordan Valley and Hills to the southeast to the west, respective...
You can help expand this article with text translated from the corresponding article in Hebrew. (June 2012) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not translate text that appears unreliable or low-qu...
Talks and activities of a possible impeachment of George W. Bush A protester calling for the impeachment of Bush on June 16, 2005. Window display in New Orleans calling for impeachment in March 2006 Man protesting in Albuquerque, New Mexico in support of impeaching both Bush and Vice President Dick Cheney in July 2008 During the presidency of George W. Bush, several American politicians sought to either investigate Bush for possible impeachable offenses, or to bring actual impeachment charges...
British politician and rabbi (born 1950) Rabbi The Right HonourableThe Baroness NeubergerDBEOfficial portrait, 2023Member of the House of LordsLord TemporalIncumbentAssumed office 15 June 2004Life Peerage Personal detailsBornJulia Babette Sarah Schwab (1950-02-27) 27 February 1950 (age 74)London, EnglandPolitical partyNone (crossbencher)Other politicalaffiliationsLiberal Democrats (1988–2011) Social Democratic Party (Before 1988)Spouse Anthony Neuberger (m.&...
Piala Liga Nasional WanitaWilayah InggrisJumlah tim72 Piala Liga Nasional Wanita FA (bahasa Inggris: Women's National League Cup) adalah kompetisi piala tahunan sepak bola wanita yang diselenggarakan oleh Federasi sepak bola Inggris (FA) dan diikuti oleh 72 peserta yang juga berkompetisi Liga Nasional Wanita – Divisi Utara dan Divisi Selatan, ditambah empat Divisi Regional Liga Satu Wanita.[1] Liga ini adalah padanan dari Trofi EFL pada sepak bola pria di Inggris. Kompetisi...
لمعانٍ أخرى، طالع تشارلز أندرسون (توضيح). تشارلز أندرسون معلومات شخصية الميلاد 1 يونيو 1814 [1] لويفيل الوفاة 2 سبتمبر 1895 (81 سنة) [1] بادوكا[2] مواطنة الولايات المتحدة إخوة وأخوات روبرت أندرسون[2]، وويليام مارشال أندرسون مناصب عضو �...
Land area comprising the rim of the Pacific Ocean For Pacific earthquake and volcanic activity, see Ring of Fire. For the film, see Pacific Rim (film). For other uses, see Pacific Rim (disambiguation). Countries in blue border the Pacific Rim. The Pacific Rim comprises the lands around the rim of the Pacific Ocean. The Pacific Basin includes the Pacific Rim and the islands in the Pacific Ocean.[1] The Pacific Rim roughly overlaps with the geological Pacific Ring of Fire. List of count...