Coenzyme Q10 (CoQ10/ˌkoʊkjuːˈtɛn/), also known as ubiquinone, is a naturally occurring biochemical cofactor (coenzyme) and an antioxidant produced by the human body.[1][2][3] It can also be obtained from dietary sources, such as meat, fish, seed oils, vegetables, and dietary supplements.[1][2] CoQ10 is found in many organisms, including animals and bacteria.
CoQ10 plays a role in mitochondrialoxidative phosphorylation, aiding in the production of adenosine triphosphate (ATP), which is involved in energy transfer within cells.[1] The structure of CoQ10 consists of a benzoquinone moiety and an isoprenoid side chain, with the "10" referring to the number of isoprenyl chemical subunits in its tail.[4][5][6]
Although an ubiquitous molecule in human tissues, CoQ10 is not a dietary nutrient and does not have a recommended intake level, and its use as a supplement is not approved in the United States for any health or anti-disease effect.[1][2]
CoQ10 is a component of the mitochondrial electron transport chain (ETC), where it plays a role in oxidative phosphorylation, a process required for the biosynthesis of adenosine triphosphate, the primary energy source of cells.[1][6][7]
CoQ10 is a lipophilic molecule that is located in all biological membranes of human body and serves as a component for the synthesis of ATP and is a life-sustaining cofactor for the three complexes (complex I, complex II, and complex III) of the ETC in the mitochondria.[1][5] CoQ10 has a role in the transport of protons across lysosomal membranes to regulate pH in lysosome functions.[1]
The mitochondrial oxidative phosphorylation process takes place in the inner mitochondrial membrane of eukaryotic cells.[1] This membrane is highly folded into structures called cristae, which increase the surface area available for oxidative phosphorylation. CoQ10 plays a role in this process as an essential cofactor of the ETC located in the inner mitochondrial membrane and serves the following functions:[1][7]
electron transport in the mitochondrial ETC, by shuttling electrons from mitochondrial complexes like nicotinamide adenine dinucleotide (NADH), ubiquinone reductase (complex I), and succinate ubiquinone reductase (complex II), the fatty acids and branched-chain amino acids oxidation (through flavin-linked dehydrogenases) to ubiquinol–cytochrome-c reductase (complex III) of the ETC:[1][7] CoQ10 participates in fatty acid and glucose metabolism by transferring electrons generated from the reduction of fatty acids and glucose to electron acceptors;[8]
antioxidant activity as a lipid-soluble antioxidant together with vitamin E, scavenging reactive oxygen species and protecting cells against oxidative stress,[1][6] inhibiting the oxidation of proteins, DNA, and use of vitamin E.[1][9]
Biochemistry
This article needs attention from an expert in biochemistry. See the talk page for details.WikiProject Biochemistry may be able to help recruit an expert.(April 2024)
Coenzymes Q is a coenzyme family that is ubiquitous in animals and many Pseudomonadota,[10] a group of gram-negative bacteria. The fact that the coenzyme is ubiquitous gives the origin of its other name, ubiquinone.[1][2][11] In humans, the most common form of coenzymes Q is coenzyme Q10, also called CoQ10 (/ˌkoʊkjuːˈtɛn/) or ubiquinone-10.[1]
Coenzyme Q10 is a 1,4-benzoquinone, in which "Q" refers to the quinone chemical group and "10" refers to the number of isoprenyl chemical subunits (shown enclosed in brackets in the diagram) in its tail.[1] In natural ubiquinones, there are from six to ten subunits in the tail, with humans having a tail of 10 isoprene units (50 carbon atoms) connected to its benzoquinone "head".[1]
This family of fat-soluble substances is present in all respiring eukaryotic cells, primarily in the mitochondria.[1] Ninety-five percent of the human body's energy is generated this way.[12] Organs with the highest energy requirements—such as the heart, liver, and kidney—have the highest CoQ10 concentrations.[13][14][15][16]
There are three redox states of CoQ: fully oxidized (ubiquinone), semiquinone (ubisemiquinone), and fully reduced (ubiquinol).[1] The capacity of this molecule to act as a two-electron carrier (moving between the quinone and quinol form) and a one-electron carrier (moving between the semiquinone and one of these other forms) is central to its role in the electron transport chain due to the iron–sulfur clusters that can only accept one electron at a time, and as a free radical–scavenging antioxidant.[1][11]
Deficiency
There are two major pathways of deficiency of CoQ10 in humans: reduced biosynthesis, and increased use by the body.[17] Biosynthesis is the major source of CoQ10. Biosynthesis requires at least 15 genes, and mutations in any of them can cause CoQ deficiency.[17] CoQ10 levels also may be affected by other genetic defects (such as mutations of mitochondrial DNA, ETFDH, APTX, FXN, and BRAF, genes that are not directly related to the CoQ10 biosynthetic process).[17] Some of these, such as mutations in COQ6, can lead to serious diseases such as steroid-resistant nephrotic syndrome with sensorineural deafness.[18][19][20]
Assessment
Although CoQ10 may be measured in blood plasma, these measurements reflect dietary intake rather than tissue status. Currently, most clinical centers measure CoQ10 levels in cultured skin fibroblasts, muscle biopsies, and blood mononuclear cells.[21] Culture fibroblasts can be used also to evaluate the rate of endogenous CoQ10 biosynthesis, by measuring the uptake of 14C-labeledp-hydroxybenzoate.[22]
CoQ10 is studied as an adjunctive therapy to reduce inflammation in periodontitis.[23]
Statins
Although statins may reduce CoQ10 in the blood it is unclear if they reduce CoQ10 in muscle.[24] Evidence does not support that supplementation improves side effects from statins.[24][25]
Chemical properties
The oxidized structure of CoQ10 is shown below. The various kinds of coenzyme Q may be distinguished by the number of isoprenoid subunits in their side-chains. The most common coenzyme Q in human mitochondria is CoQ10.[1] Q refers to the quinone head and "10" refers to the number of isoprene repeats in the tail. The molecule below has three isoprenoid units and would be called Q3.
In its pure state, it is an orange-colored lipophile powder, and has no taste nor odor.[11]
Biosynthesis
Biosynthesis occurs in most human tissue. There are three major steps:
An important enzyme in this pathway is HMG-CoA reductase, usually a target for intervention in cardiovascular complications. The "statin" family of cholesterol-reducing medications inhibits HMG-CoA reductase. One possible side effect of statins is decreased production of CoQ10, which may be connected to the development of myopathy and rhabdomyolysis. However, the role statins play in CoQ deficiency is controversial. Although statins reduce blood levels of CoQ, studies on the effects of muscle levels of CoQ are yet to come. CoQ supplementation also does not reduce side effects of statin medications.[21][24]
Organisms other than humans produce the benzoquinone and isoprene structures from somewhat different source chemicals. For example, the bacteria E. coli produces the former from chorismate and the latter from a non-mevalonate source. The common yeast S. cerevisiae, however, derives the former from either chorismate or tyrosine and the latter from mevalonate. Most organisms share the common 4-hydroxybenzoate intermediate, yet again uses different steps to arrive at the "Q" structure.[28]
Dietary supplement
Although neither a prescription drug nor an essential nutrient, CoQ10 is commonly used as a dietary supplement with the intent to prevent or improve disease conditions, such as cardiovascular disorders.[2][29] CoQ10 is naturally produced by the body and plays a crucial role in cell growth and protection.[6] Despite its significant role in the body, it is not used as a drug for the treatment of any specific disease.[1][2][3]
Nevertheless, CoQ10 is widely available as an over-the-counter dietary supplement and is recommended by some healthcare professionals, despite a lack of definitive scientific evidence supporting these recommendations,[1][3] especially when it comes to cardiovascular diseases.[30]
A 2014 Cochrane review found insufficient evidence to make a conclusion about its use for the prevention of heart disease.[36] A 2016 Cochrane review concluded that CoQ10 had no effect on blood pressure.[37] A 2021 Cochrane review found "no convincing evidence to support or refute" the use of CoQ10 for the treatment of heart failure.[38]
A 2017 meta-analysis of people with heart failure taking 30–100 mg/d of CoQ10 found a 31% lower mortality and increased exercise capacity, with no significant difference in the endpoints of left heart ejection fraction.[39] A 2021 meta-analysis found that coenzyme Q10 was associated with a 31% lower all-cause mortality in HF patients.[40] In a 2023 meta-analysis of older people, ubiquinone had evidence of a cardiovascular effect, but ubiquinol did not.[41]
Although CoQ10 has been studied as a potential remedy to treat purported muscle-related side effects of statin medications, the results were mixed. Although a 2018 meta-analysis concluded that there was preliminary evidence for oral CoQ10 reducing statin-associated muscle symptoms, including muscle pain, muscle weakness, muscle cramps and muscle tiredness,[42] 2015[43] and 2024[30] meta-analysis found that CoQ10 had no effect on statin myopathy.[43][30]
CoQ10 is studied as an adjunctive therapy to reduce inflammation in periodontitis.[23]
Pharmacology
Absorption
CoQ10 in the pure form is a crystalline powder insoluble in water. Absorption as a pharmacological substance follows the same process as that of lipids; the uptake mechanism appears to be similar to that of vitamin E, another lipid-soluble nutrient.[16] This process in the human body involves secretion into the small intestine of pancreatic enzymes and bile, which facilitates emulsification and micelle formation required for absorption of lipophilic substances.[44] Food intake (and the presence of lipids) stimulates bodily biliary excretion of bile acids and greatly enhances absorption of CoQ10. Exogenous CoQ10 is absorbed from the small intestine and is best absorbed if taken with a meal. Serum concentration of CoQ10 in fed condition is higher than in fasting conditions.[45][46]
Metabolism
CoQ10 is metabolized in all tissues, with the metabolites being phosphorylated in cells.[2] CoQ10 is reduced to ubiquinol during or after absorption in the small intestine.[2] It is absorbed by chylomicrons, and redistributed in the blood within lipoproteins.[2] Its elimination occurs via biliary and fecalexcretion.[2]
Pharmacokinetics
Some reports have been published on the pharmacokinetics of CoQ10. The plasma peak can be observed 6–8 hours after oral administration when taken as a pharmacological substance.[2] In some studies, a second plasma peak also was observed at approximately 24 hours after administration, probably due to both enterohepatic recycling and redistribution from the liver to circulation.[44]
Deuterium-labeled crystalline CoQ10 was used to investigate pharmacokinetics in humans to determine an elimination half-time of 33 hours.[47]
Bioavailability
In contrast to intake of CoQ10 as a constituent of food, such as nuts or meat, from which CoQ10 is normally absorbed, there is a concern about CoQ10 bioavailability when it is taken as a dietary supplement.[48][49] Bioavailability of CoQ10 supplements may be reduced due to the lipophilic nature of its molecule and large molecular weight.[48]
Reduction of particle size
Nanoparticles have been explored as a delivery system for various drugs, such as improving the oral bioavailability of drugs with poor absorption characteristics.[50] However, this has not proved successful with CoQ10, although reports have differed widely.[51][52] The use of aqueous suspension of finely powdered CoQ10 in pure water also reveals only a minor effect.[53]
Water-solubility
Facilitating drug absorption by increasing its solubility in water is a common pharmaceutical strategy and also has been shown to be successful for CoQ10. Various approaches have been developed to achieve this goal, with many of them producing significantly better results over oil-based softgel capsules in spite of the many attempts to optimize their composition.[16] Examples of such approaches are use of the aqueous dispersion of solid CoQ10 with the polymertyloxapol,[54] formulations based on various solubilising agents, such as hydrogenated lecithin,[55] and complexation with cyclodextrins; among the latter, the complex with β-cyclodextrin has been found to have highly increased bioavailability[56][57] and also is used in pharmaceutical and food industries for CoQ10-fortification.[16]
Adverse effects and precautions
Generally, oral CoQ10 supplementation is well tolerated.[1] The most common side effects are gastrointestinal symptoms (nausea, vomiting, appetite suppression, and abdominal pain), rashes, and headaches.[58] Some adverse effects, largely gastrointestinal, are reported with intakes.[2] Doses of 100–300 mg per day may induce insomnia or elevate liver enzymes.[2] The observed safe level risk assessment method indicated that the evidence of safety is acceptable at intakes up to 1200 mg per day.[59]
Use of CoQ10 supplementation is not recommended in people with liver or kidney disease, during pregnancy or breastfeeding, or in the elderly.[2]
Potential drug interactions
CoQ10 taken as a pharmacological substance has potential to inhibit the effects of theophylline as well as the anticoagulantwarfarin; CoQ10 may interfere with warfarin's actions by interacting with cytochrome p450 enzymes thereby reducing the INR, a measure of blood clotting.[60] The structure of CoQ10 is similar to that of vitamin K, which competes with and counteracts warfarin's anticoagulation effects. CoQ10 is not recommended in people taking warfarin due to the increased risk of clotting.[58]
Dietary concentrations
Detailed reviews on occurrence of CoQ10 and dietary intake were published in 2010.[61] Besides the endogenous synthesis within organisms, CoQ10 also is supplied by various foods.[1] CoQ10 concentrations in various foods are:[1]
Vegetable oils, meat and fish are quite rich in CoQ10 levels.[1]Dairy products are much poorer sources of CoQ10 than animal tissues. Among vegetables, broccoli and cauliflower are good sources of CoQ10.[1] Most fruit and berries are poor sources of CoQ10, with the exception of avocados, which have a relatively high oil and CoQ10 content.[61]
Intake
In the developed world, the estimated daily intake of CoQ10 has been determined at 3–6 mg per day, derived primarily from meat.[61]
South Koreans have an estimated average daily CoQ (Q9 + Q10) intake of 11.6 mg/d, derived primarily from kimchi.[62]
Effect of heat and processing
Cooking by frying reduces CoQ10 content by 14–32%.[63]
History
In 1950, a small amount of CoQ10 was isolated from the lining of a horse's gut, a compound initially called substance SA, but later deemed to be quinone found in many animal tissues.[64] In 1957, the same compound was isolated from mitochondrial membranes of beef heart, with research showing that it transported electrons within mitochondria. It was called Q-275 as a quinone.[64][65] The Q-275/substance SA was later renamed ubiquinone as it was a ubiquitous quinone found in all animal tissues.[64] In 1958, its full chemical structure was reported.[64][66] Ubiquinone was later called either mitoquinone or coenzyme Q due to its participation to the mitochondrial electron transport chain.[64] In 1966, a study reported that reduced CoQ6 was an effective antioxidant in cells.[67]
See also
Idebenone – synthetic analog with reduced oxidant generating properties
Mitoquinone mesylate – synthetic analog with improved mitochondrial permeability
References
^ abcdefghijklmnopqrstuvwxyzaa"Coenzyme Q10". Micronutrient Information Center, Linus Pauling Institute, Oregon State University. 2018. Archived from the original on 15 March 2024. Retrieved 13 April 2024.
^ abcdefghijklmnSood B, Preeti Patel P, Keenaghan M (30 January 2024). "Coenzyme Q10". StatPearls, US National Library of Medicine. PMID30285386. Archived from the original on 2 October 2023. Retrieved 17 April 2024.
^ abc"Coenzyme Q10". National Center for Complementary and Integrative Health, US National Institutes of Health. January 2019. Archived from the original on 4 April 2024. Retrieved 13 April 2024.
^ abKadian M, Sharma G, Pandita S, Sharma K, Shrivasatava K, Saini N, et al. (2022). "The Impact of Coenzyme Q10 on Neurodegeneration: A Comprehensive Review". Current Pharmacology Reports. 8: 1–19. doi:10.1007/s40495-021-00273-6.
^Okamoto T, Matsuya T, Fukunaga Y, Kishi T, Yamagami T (1989). "Human serum ubiquinol-10 levels and relationship to serum lipids". International Journal for Vitamin and Nutrition Research. Internationale Zeitschrift Fur Vitamin- und Ernahrungsforschung. Journal International de Vitaminologie et de Nutrition. 59 (3): 288–292. PMID2599795.
^Aberg F, Appelkvist EL, Dallner G, Ernster L (June 1992). "Distribution and redox state of ubiquinones in rat and human tissues". Archives of Biochemistry and Biophysics. 295 (2): 230–234. doi:10.1016/0003-9861(92)90511-T. PMID1586151.
^Shindo Y, Witt E, Han D, Epstein W, Packer L (January 1994). "Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin". The Journal of Investigative Dermatology. 102 (1): 122–124. doi:10.1111/1523-1747.ep12371744. PMID8288904.
^Montero R, Sánchez-Alcázar JA, Briones P, Hernández AR, Cordero MD, Trevisson E, et al. (June 2008). "Analysis of coenzyme Q10 in muscle and fibroblasts for the diagnosis of CoQ10 deficiency syndromes". Clinical Biochemistry. 41 (9): 697–700. doi:10.1016/j.clinbiochem.2008.03.007. hdl:11577/2447079. PMID18387363.
^ abFawzy El-Sayed KM, Cosgarea R, Sculean A, Doerfer C (February 2024). "Can vitamins improve periodontal wound healing/regeneration?". Periodontol 2000. 94 (1): 539–602. doi:10.1111/prd.12513. PMID37592831.
^Bentinger M, Tekle M, Dallner G (May 2010). "Coenzyme Q--biosynthesis and functions". Biochemical and Biophysical Research Communications. 396 (1): 74–79. doi:10.1016/j.bbrc.2010.02.147. PMID20494114.
^Arenas-Jal M, Suñé-Negre JM, García-Montoya E (March 2020). "Coenzyme Q10 supplementation: Efficacy, safety, and formulation challenges". Comprehensive Reviews in Food Science and Food Safety. 19 (2): 574–594. doi:10.1111/1541-4337.12539. hdl:2445/181270. PMID33325173.
^ abcBjørklund G, Semenova Y, Gasmi A, Indika NR, Hrynovets I, Lysiuk R, et al. (2024). "Coenzyme Q10 for Enhancing Physical Activity and Extending the Human Life Cycle". Curr Med Chem. 31 (14): 1804–1817. doi:10.2174/0929867330666230228103913. PMID36852817.
^Hojerová J (May 2000). "[Coenzyme Q10--its importance, properties and use in nutrition and cosmetics]". Ceska a Slovenska Farmacie. 49 (3): 119–123. PMID10953455.
^ abBanach M, Serban C, Sahebkar A, Ursoniu S, Rysz J, Muntner P, et al. (January 2015). "Effects of coenzyme Q10 on statin-induced myopathy: a meta-analysis of randomized controlled trials". Mayo Clinic Proceedings (Systematic Review and Meta-Analysis). 90 (1): 24–34. doi:10.1016/j.mayocp.2014.08.021. PMID25440725.
^Bogentoft C, Edlund PO, Olsson B, Widlund L, Westensen K (1991). "Biopharmaceutical aspects of intravenous and oral administration of coenzyme Q10.". Biomedical and clinical aspects of coenzyme Q. Vol. 6. pp. 215–224.
^Tomono Y, Hasegawa J, Seki T, Motegi K, Morishita N (October 1986). "Pharmacokinetic study of deuterium-labeled coenzyme Q10 in man". International Journal of Clinical Pharmacology, Therapy, and Toxicology. 24 (10): 536–541. PMID3781673.
^Mathiowitz E, Jacob JS, Jong YS, Carino GP, Chickering DE, Chaturvedi P, et al. (March 1997). "Biologically erodable microspheres as potential oral drug delivery systems". Nature. 386 (6623): 410–414. Bibcode:1997Natur.386..410M. doi:10.1038/386410a0. PMID9121559. S2CID4324209.
^Joshi SS, Sawant SV, Shedge A, Halpner AD (January 2003). "Comparative bioavailability of two novel coenzyme Q10 preparations in humans". International Journal of Clinical Pharmacology and Therapeutics. 41 (1): 42–48. doi:10.5414/CPP41042. PMID12564745.[verification needed]
^Ozawa Y, Mizushima Y, Koyama I, Akimoto M, Yamagata Y, Hayashi H, et al. (April 1986). "Intestinal absorption enhancement of coenzyme Q10 with a lipid microsphere". Arzneimittel-Forschung. 36 (4): 689–690. PMID3718593.
^US 6197349, Westesen K, Siekmann B, "Particles with modified physicochemical properties, their preparation and uses", published 2001
^US 4483873, Ohashi H, Takami T, Koyama N, Kogure Y, Ida K, "Aqueous solution containing ubidecarenone", published 1984
^Zmitek J, Smidovnik A, Fir M, Prosek M, Zmitek K, Walczak J, et al. (2008). "Relative bioavailability of two forms of a novel water-soluble coenzyme Q10". Annals of Nutrition & Metabolism. 52 (4): 281–287. doi:10.1159/000129661. PMID18645245. S2CID825159.
^Kagan D, Madhavi D (2010). "A Study on the Bioavailability of a Novel Sustained-Release Coenzyme Q10-β-Cyclodextrin Complex". Integrative Medicine. 9 (1).
^ abcdPravst I, Zmitek K, Zmitek J (April 2010). "Coenzyme Q10 contents in foods and fortification strategies". Critical Reviews in Food Science and Nutrition. 50 (4): 269–280. doi:10.1080/10408390902773037. PMID20301015. S2CID38779392.
^Pyo Y, Oh H (2011). "Ubiquinone contents in Korean fermented foods and average daily intakes". Journal of Food Composition and Analysis. 24 (8): 1123–1129. doi:10.1016/j.jfca.2011.03.018.
^Weber C, Bysted A, Hłlmer G (1997). "The coenzyme Q10 content of the average Danish diet". International Journal for Vitamin and Nutrition Research. Internationale Zeitschrift Fur Vitamin- und Ernahrungsforschung. Journal International de Vitaminologie et de Nutrition. 67 (2): 123–129. PMID9129255.
^Crane FL, Hatefi Y, Lester RL, Widmer C (July 1957). "Isolation of a quinone from beef heart mitochondria". Biochimica et Biophysica Acta. 25 (1): 220–221. doi:10.1016/0006-3002(57)90457-2. PMID13445756.
^Wolf DE (1958). "Coenzyme Q. I. structure studies on the coenzyme Q group". Journal of the American Chemical Society. 80 (17): 4752. doi:10.1021/ja01550a096. ISSN0002-7863.
Akita ShinkansenShinkansen E3 melintas di antara Stasiun Ōmagari dan Stasiun Akita di Jalur Utama Ōu (2014).IkhtisarNama asli秋田新幹線JenisMini-shinkansenLokasiPrefektur Iwate and AkitaTerminusMoriokaAkitaStasiun11OperasiDibuka22 Maret 1997PemilikJR EastRangkaianShinkansen seri E6 (saat ini)Data teknisPanjang lintas127.3 kmLebar sepur1.435 mm (4 ft 8+1⁄2 in)Elektrifikasi20 kV AC, 50 Hz, overhead catenaryKecepatan operasi130 km/h (80 mph) Route Map (...
Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. Pemandangan Brno Brno (Jerman: Brünncode: de is deprecated ) merupakan kota yang terletak di sebelah selatan Ceko. Penduduknya berjumlah 367.000 jiwa (2005). Di kota ini pernah tinggal Pendiri Genetika, Gregor Mendel pada abad ke-19 sebagai biarawan Katolik Roma. Kota kembar Dallas, Texas, Amerika Serikat. Kaunas, Lit...
روسلين هاربور الإحداثيات 40°49′05″N 73°38′02″W / 40.8181°N 73.6339°W / 40.8181; -73.6339 [1] تقسيم إداري البلد الولايات المتحدة[2] التقسيم الأعلى مقاطعة ناسو خصائص جغرافية المساحة 3.071984 كيلومتر مربع3.074904 كيلومتر مربع (1 أبريل 2010) ارتفاع 33 متر عدد...
Gadis Sampul 1987Tanggal28 Februari 1987TempatFlores Room Hotel Borobudur Inter Continental, JakartaPembawa acaraSersan PramborsPengisi acaraElfa’s Big BandVina PanduwinataKrakatauNeno WarismanHarvey MalaiholoNicky AstriaJanuary ChristyKarimataPemenangMonika Gunawanova CilegonPemenang FavoritNatasha Pramudita JakartaPenghargaan khususPemenang FavoritGadis Sampul 1988 →lbs Gadis Sampul 1987 adalah kontes remaja wanita yang diselenggarakan pertama kalinya oleh majala...
Governor of KansasState sealStandard of the governorIncumbentLaura Kellysince January 14, 2019Government of KansasResidenceCedar CrestTerm lengthFour years, renewable once consecutivelyInaugural holderCharles L. RobinsonFormationFebruary 9, 1861Salary$99,636 (2017)[1]Websitegovernor.kansas.gov The governor of Kansas is the head of state of Kansas[2] and the commander-in-chief of the state's military forces.[3] The governor has a duty to enforce state laws,[2&...
2006 television film This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2013) (Learn how and when to remove this message) The Ron Clark StoryDVD coverWritten byAnnie deYoungMax EnscoeDirected byRanda HainesStarringMatthew PerryErnie HudsonTheme music composerMark AdlerCountry of originUnited StatesOriginal languageEnglishProductionProducersJody Brockway...
Trio of backup singers who support Bette Midler The Harlettes, also known as The Staggering Harlettes, is a trio of backup singers who support Bette Midler during her live musical performances. The Harlettes' line-up has changed many times since their inception. History Melissa Manchester was one of the original Harlettes Bette Midler's stage act grew out of her early 1970s performances at the Continental Baths, a gay bathhouse in Manhattan which offered entertainment on the weekends. With he...
2004 single by Ayumi HamasakiMomentsSingle by Ayumi Hamasakifrom the album My Story ReleasedMarch 31, 2004Recorded2004GenrePop rockLength23:23LabelAvex TraxSongwriter(s)Ayumi Hamasaki (lyrics)Tetsuya Yukumi (music)Producer(s)Max MatsuuraAyumi Hamasaki singles chronology No Way to Say (2003) Moments (2004) Inspire (2004) Official Music VideoMoments on YouTube Moments is the thirty-second single released by Japanese recording artist Ayumi Hamasaki and was her first to be offered in both CD and ...
Period of Maltese history from 535 CE to 870 CE Part of a series on the History of Malta Ancient history Għar Dalam phase Ġgantija phase Saflieni phase Tarxien phase Phoenicians and Carthage Roman rule Middle Ages Byzantine Malta Arab period Normans Kingdom of Sicily Modern history Knights Hospitaller Great Siege French occupation Insurrection and independent Gozo British Period British Protectorate British Colony Language Question World War II From home rule to independence Independent Mal...
Chief law officer of the state of Wisconsin Attorney General of WisconsinSeal of the attorney general of WisconsinIncumbentJosh Kaulsince January 7, 2019Wisconsin Department of JusticeStyleMr. or Madam Attorney General (informal)The Honorable (formal)SeatWisconsin State CapitolMadison, WisconsinAppointerGeneral electionTerm lengthFour years, no term limitsConstituting instrumentWisconsin Constitution of 1848, Article VIInaugural holderJames S. BrownFormationJune 7, 1848(176 years ago)...
Irish-born American pioneer of public health and preventive medicine Maude GlasgowBorn1876IrelandDied1955New York Dr. Maude Glasgow (1876–1955) was an early pioneer in public health and preventive medicine as well as an activist for equal rights. Life Maude Glasgow was born in Cookstown, Ireland in 1876. Her father was Silas Glasgow of Killycurragh. She had a brother James later of Moneymore. She was educated in the Marlborough Street College in Dublin before she emigrated to New York. Her ...
Primera ronda de la Clasificación de Concacaf para la Copa Mundial de Fútbol de 2010 2008 2010 FIFA World Cup qualification – CONCACAF First Round Fecha 3 de febrero de 200826 de marzo de 2008 Cantidad de equipos 22 (de 35 participantes) Equipos clasificados BRB BarbadosLCA Santa LucíaBER BermudasATG Antigua y BarbudaBLZ BeliceBAH BahamasPUR Puerto RicoVIN San Vicente y las GranadinasGRN GranadaSUR SurinamSLV El SalvadorANT...
العلاقات الأندورية السويسرية أندورا سويسرا أندورا سويسرا تعديل مصدري - تعديل العلاقات الأندورية السويسرية هي العلاقات الثنائية التي تجمع بين أندورا وسويسرا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة...
Den här artikeln behöver källhänvisningar för att kunna verifieras. (2016-02) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. För andra betydelser, se Duma (olika betydelser). Duma (ryska: Ду́ма för att tänka efter) är den generella[källa behövs] beteckningen på en lagstiftande församling i det moderna och det historis...
Muḥammad ʿAbd al-Salām Faraǧ Muḥammad ʿAbd al-Salām Faraǧ (in arabo ﻣﺤﻤﺪ عبد السلام ﻓﺮﺝ?); Dolongat, 1954 – Il Cairo, 15 aprile 1982) è stato un teologo e terrorista egiziano. Ideologo del fondamentalismo islamico egiziano, guidò al Cairo la branca fondamentalista della Jihad islamica egiziana e fornì un importante contributo teorico con la sua esaltazione del dovere del jihad nel pensiero radicale islamico con il suo pamphlet L'obbligo neglet...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أكتوبر 2022) تاريخ الاستراليين الاسويينمعلومات عامةالمنطقة أستراليا التأثيراتأحد جوانب أستراليون آسيويون فرع من تاريخ أسترالياتاريخ الهجرة في أستراليا تعديل - تعديل ...
American biochemist (1930–1982) This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (March 2013) (Learn how and when to remove this message) Stanford MooreBorn(1913-09-04)September 4, 1913Chicago, IllinoisDiedAugust 23, 1982(1982-08-23) (aged 68)New York City, New YorkNationalityU.S.Alma materVanderbilt UniversityUniv...