Cluster algebra

Cluster algebras are a class of commutative rings introduced by Fomin and Zelevinsky (2002, 2003, 2007). A cluster algebra of rank n is an integral domain A, together with some subsets of size n called clusters whose union generates the algebra A and which satisfy various conditions.

Definitions

Suppose that F is an integral domain, such as the field Q(x1,...,xn) of rational functions in n variables over the rational numbers Q.

A cluster of rank n consists of a set of n elements {x, y, ...} of F, usually assumed to be an algebraically independent set of generators of a field extension F.

A seed consists of a cluster {x, y, ...} of F, together with an exchange matrix B with integer entries bx,y indexed by pairs of elements x, y of the cluster. The matrix is sometimes assumed to be skew-symmetric, so that bx,y = –by,x for all x and y. More generally the matrix might be skew-symmetrizable, meaning there are positive integers dx associated with the elements of the cluster such that dxbx,y = –dyby,x for all x and y. It is common to picture a seed as a quiver whose vertices are the generating set, by drawing bx,y arrows from x to y if this number is positive. When bx,y is skew symmetrizable the quiver has no loops or 2-cycles.

A mutation of a seed, depending on a choice of vertex y of the cluster, is a new seed given by a generalization of tilting as follows. Exchange the values of bx,y and by,x for all x in the cluster. If bx,y > 0 and by,z > 0 then replace bx,z by bx,yby,z + bx,z. If bx,y < 0 and by,z < 0 then replace bx,z by -bx,yby,z + bx,z. If bx,y by,z ≤ 0 then do not change bx,z. Finally replace y by a new generator w, where

where the products run through the elements t in the cluster of the seed such that bt,y is positive or negative respectively. The inverse of a mutation is also a mutation, i.e. if A is a mutation of B then B is a mutation of A.

A cluster algebra is constructed from an initial seed as follows. If we repeatedly mutate the seed in all possible ways, we get a finite or infinite graph of seeds, where two seeds are joined by an edge if one can be obtained by mutating the other. The underlying algebra of the cluster algebra is the algebra generated by all the clusters of all the seeds in this graph. The cluster algebra also comes with the extra structure of the seeds of this graph.

A cluster algebra is said to be of finite type if it has only a finite number of seeds. Fomin & Zelevinsky (2003) showed that the cluster algebras of finite type can be classified in terms of the Dynkin diagrams of finite-dimensional simple Lie algebras.

Examples

Cluster algebras of rank 1

If {x} is the cluster of a seed of rank 1, then the only mutation takes this to {2x−1}. So a cluster algebra of rank 1 is just a ring k[x,x−1] of Laurent polynomials, and it has just two clusters, {x} and {2x−1}. In particular it is of finite type and is associated with the Dynkin diagram A1.

Cluster algebras of rank 2

Suppose that we start with the cluster {x1, x2} and take the exchange matrix with b12 = –b21 = 1. Then mutation gives a sequence of variables x1, x2, x3, x4,... such that the clusters are given by adjacent pairs {xn, xn+1}. The variables are related by

so are given by the sequence

which repeats with period 5. So this cluster algebra has exactly 5 clusters, and in particular is of finite type. It is associated with the Dynkin diagram A2.

There are similar examples with b12 = 1, –b21 = 2 or 3, where the analogous sequence of cluster variables repeats with period 6 or 8. These are also of finite type, and are associated with the Dynkin diagrams B2 and G2. However if |b12b21| ≥ 4 then the sequence of cluster variables is not periodic and the cluster algebra is of infinite type.

Cluster algebras of rank 3

Suppose we start with the quiver x1x2x3. Then the 14 clusters are:

There are 6 cluster variables other than the 3 initial ones x1, x2, x3 given by

.

They correspond to the 6 positive roots of the Dynkin diagram A3: more precisely the denominators are monomials in x1, x2, x3, corresponding to the expression of positive roots as the sum of simple roots. The 3+6 cluster variables generate a cluster algebra of finite type, associated with the Dynkin diagram A3. The 14 clusters are the vertices of the cluster graph, which is an associahedron.

Grassmannians

Simple examples are given by the algebras of homogeneous functions on the Grassmannians. The Plücker coordinates provide some of the distinguished elements.

Mutation between two triangulations of the heptagon

For the Grassmannian of planes in , the situation is even more simple. In that case, the Plücker coordinates provide all the distinguished elements and the clusters can be completely described using triangulations of a regular polygon with n vertices. More precisely, clusters are in one-to-one correspondence with triangulations and the distinguished elements are in one-to-one correspondence with diagonals (line segments joining two vertices of the polygon). One can distinguish between diagonals in the boundary, which belong to every cluster, and diagonals in the interior. This corresponds to a general distinction between coefficient variables and cluster variables.

Cluster algebras arising from surfaces

Suppose S is a compact connected oriented Riemann surface and M is a non-empty finite set of points in S that contains at least one point from each boundary component of S (the boundary of S is not assumed to be either empty or non-empty). The pair (S, M) is often referred to as a bordered surface with marked points. It has been shown by Fomin-Shapiro-Thurston that if S is not a closed surface, or if M has more than one point, then the (tagged) arcs on (S, M) parameterize the set of cluster variables of certain cluster algebra A(S, M), which depends only on (S, M) and the choice of some coefficient system, in such a way that the set of (tagged) triangulations of (S, M) is in one-to-one correspondence with the set of clusters of A(S, M), two (tagged) triangulations being related by a flip if and only if the clusters they correspond to are related by cluster mutation.

Double Bruhat Cells

For a reductive group such as with Borel subgroups then on (where and are in the Weyl group) there are cluster coordinate charts depending on reduced word decompositions of and . These are called factorization parameters and their structure is encoded in a wiring diagram. With only or only , this is Bruhat decomposition.

References

Read other articles:

León Rodal León Rodal, también llamado Arie o Leib Rodal (Kielce,[1]​ 1913 - Varsovia, el 6 de mayo de 1943): periodista polaco, activista del Partido Revisionista Sionista, cofundador y uno de los comandantes de Żydowski Związek Wosjkowy (en español, Unión Militar Judía). Participó y murió en el Levantamiento del gueto de Varsovia. Biografía León Rodal, también conocido como Leib (en yídish) y Arie (en hebreo), antes de la guerra fue periodista conocido de las revistas Mo...

Transportasi Umum Hong Kong Hong Kong memiliki jaringan transportasi yang sangat maju dan canggih, meliputi kendaraan umum dan pribadi. Menurut Survei Karakteristik Perjalanan Pemerintah Hong Kong, lebih dari 90% perjalanan harian berada di angkutan umum, tertinggi di dunia.[1] Namun, Komite Penasehat Transportasi pada tahun 2014 mengeluarkan laporan pada banyak memperburuk masalah kemacetan di Hong Kong dan menunjuk pada pertumbuhan berlebihan dari mobil pribadi selama 10-15 tahun te...

English political organizer and activist (1870–1943) Ida Chamberlainin 1929 (photographer unknown)BornFlorence Ida Chamberlain22 May 1870Edgbaston, Warwickshire, ENglandDied1 April 1943 (1943-05) (aged 72)OdihamEducationAllenswood Boarding AcademyOccupation(s)political organiser and activistKnown forfirst woman alderman in HampshireParent(s)Florence (born Kenrick) and Joseph Chamberlain Florence Ida Chamberlain (22 May 1870 – 1 April 1943) was a British political organiser ...

 キム・ハヌル Kim Ha-neul基本情報名前 キム・ハヌル生年月日 (1988-12-17) 1988年12月17日(34歳)身長 170 cm (5 ft 7 in)体重 58 kg (128 lb)国籍  大韓民国出身地 京畿道経歴大学 建國大學校卒業プロ転向 2006年JLPGA入会2017年JLPGA89期優勝数日本LPGA 6(内、公式戦2)韓国LPGA 8(内、メジャー1)成績賞金ランク最高位 韓国女子:1位(2011、2012)日本女子:4位(2017�...

此條目已列出參考文獻,但因為沒有文內引註而使來源仍然不明。 (2023年1月26日)请加上合适的文內引註来改善这篇条目。   此條目介紹的是汉末三国将领韓浩。关于唐朝官员韓浩,请见「韓浩 (唐朝)」。关于宋朝韩琦之孙韩浩,请见「韩浩 (宋朝)」。 韓浩(?—?),字元嗣,河內(郡治在今河南省焦作市境内)人,東漢末年三国時期曹操手下的將領。 生平 東漢末年�...

Remedies from ancient Egypt This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ancient Egyptian medicine – news · newspapers · books · scholar · JSTOR (April 2016) (Learn how and when to remove this template message) The Edwin Smith Papyrus documents ancient Egyptian medicine, including the diagnosis and treatm...

Secondary school in Tin Shui Wai, Hong Kong Tin Shui Wai Government Secondary School (TSWGSS) 天水圍官立中學 (天官)Tin Shui Wai Government Secondary SchoolLocationPhase II Tin Yiu Estate , Tin Shui Wai , Yuen Long New TerritoriesInformationTypeGovernmentEstablished1990School districtYuen Long DistrictPrincipalKwok Kin WaStaff60Number of students1,100LanguageChineseAreaapprox. 5,400 Sq. MHousesJupiter, Mars, Mercury, VenusAffiliationGovernmentWebsitetswgss.edu.hk Tin Shui Wai Governme...

Tall ship of the Italian Navy (Marina Militare) Amerigo Vespucci in New York Harbor, 1976 History Italy NameAmerigo Vespucci NamesakeAmerigo Vespucci Laid down12 May 1930 Launched22 February 1931 Commissioned26 May 1931 Identification MMSI number: 247999000 Callsign: IABJ Motto Italian: Non chi comincia ma quel che persevera English: Not he who begins but he who perseveres Statusin active service General characteristics Class and typeFull-rigged ship Tonnage 3,410 GT 1,203 NT Displa...

Main antagonist of the A Nightmare on Elm Street franchise For other uses, see Freddy Krueger (disambiguation). Fictional character Freddy KruegerA Nightmare on Elm Street characterRobert Englund as Freddy KruegerFirst appearanceA Nightmare on Elm Street (1984)Created byWes CravenPortrayed by Robert Englund Michael Bailey Smith Chase Schrimer Tobe Sexton Jackie Earle Haley In-universe informationAliasThe Springwood SlasherClassificationMass murderer[1]Primary locationSpringwood, OhioS...

село Журавлинка Країна  Україна Область Дніпропетровська область Район Васильківський район Рада Чаплинська селищна рада Код КАТОТТГ UA12140070090030495 Облікова картка Журавлинка  Основні дані Населення 375 Поштовий індекс 52663 Телефонний код +380 5639 Географічні дані Геогра�...

American actor Dave AnnableDave Annable on the set of Heartbeat in 2016BornDavid Rodman Annable (1979-09-15) September 15, 1979 (age 44)Suffern, New York, U.S.Alma materState University of New York at Plattsburgh (BA)OccupationActorYears active2002–presentSpouse Odette Yustman ​(m. 2010)​Children2 David Rodman Annable (born September 15, 1979) is an American actor. His roles include Justin Walker on the ABC television drama Brothers & Sisters ...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ablekuma Central – news · newspapers · books · scholar · JSTOR (October 2020) (Learn how and when to remove this template message) Ablekuma Centralconstituencyfor the Parliament of GhanaDistrictAccra Metropolis DistrictRegionGreater Accra Region of GhanaCurrent...

1998 live album Celebrando 25 Años de Juan Gabriel: En Concierto en el Palacio de Bellas ArtesLive album by Juan GabrielReleasedJanuary 13, 1998RecordedAugust 22, 1997VenuePalacio de Bellas Artes (Mexico City)GenrePop Latino, Mariachi, Regional MexicanLabelRCA Victor Celebrando 25 Años de Juan Gabriel: En Concierto en el Palacio de Bellas Artes (Celebrating 25 Years of Juan Gabriel: Live from Bellas Artes) is the title of a live album by Mexican singer-songwriter Juan Gabriel. It was re...

Automaten der französischen Staatsbahn SNCF in Straßburg (2014) Fahrkartenautomaten, Fahrscheinautomaten oder schweizerisch Billettautomaten sind Selbstbedienungsautomaten und werden sowohl im öffentlichen Personenverkehr, insbesondere bei S-, U- und Stadtbahnen, als auch bei Eisenbahngesellschaften zum Verkauf von Fahrscheinen und gegebenenfalls Bahnsteigkarten eingesetzt. Moderne Fahrkartenautomaten erlauben im Regelfall die Zahlung mit Münzen oder mit Geldscheinen sowie häufig mit Gel...

Sony α37OverviewTypeSingle Lens TranslucentLensLensinterchangeable, Sony A-mountSensor/mediumSensor23,4 mm × 15,66 mm, 16.1 effective megapixels CMOSFilm speedAuto: 100-3200; Selectable: 100-16000; Multi Frame NR (up to ISO 25600)Storage mediaMemory Stick PRO Duo™, Memory Stick PRO-HG Duo™, SD memory card, SDHC memory card, SDXC memory cardExposure/meteringExposure meteringAdvanced 1200-zone evaluative meteringMetering modesMulti-segment, Center-weighted, SpotFlashFlashBuilt-i...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ian Fleming Publications – news · newspapers · books · scholar · JSTOR (April 2007) (Learn how and when to remove this template message) Production company Ian Fleming Publications is the production company formerly known as both Glidrose Productions Limited an...

1993 video game 1993 video gameAlcahestDeveloper(s)HAL LaboratoryPublisher(s)SquareDirector(s)Atsushi KakutaProducer(s)Satoru IwataDesigner(s)Atsushi KakutaProgrammer(s)Hiroaki SugaArtist(s)Hitoshi KikkawaR. IshidaSatoshi IshidaComposer(s)Jun IshikawaPlatform(s)Super FamicomReleaseJP: December 17, 1993Genre(s)ActionMode(s)Single-player Alcahest[a] is a 1993 action game developed by HAL Laboratory and published by Square for the Super Famicom. It is one of the titles Square did not dev...

12th century chronicle of Persian Kings A copy of the book from Herat, dated 1425 CE. Depicted are Muhammad and the archangel Gabriel. Script is in Persian language. Mojmal al-Tawarikh wa al-Qasas (مُجمل التواریخ و القصص The Collection of Histories and Tales) was a book written in Ghaznavid Persia (in c. 1126[citation needed]). The book is a chronicle mostly of Persian Kings, and is often cited as a source of reference for historical events of the 12th century and b...

This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (February 2016) BravoMiley Cyrus in front of the cover of the first 2010 issue.Editor-in-ChiefCristian ConstantinCategoriesTeenageFrequencyBimonthlyPublisherRINGINER RomaniaPaid circulation445.041 (Q1/2007)Total circulation619.100 (Q1/2007)Founded1997Final issueApril 2014CompanyHeinrich Bauer Zeitschr...

Fresno de la Vegacomune Fresno de la Vega – Veduta LocalizzazioneStato Spagna Comunità autonoma Castiglia e León Provincia León TerritorioCoordinate42°21′00″N 5°31′59.88″W / 42.35°N 5.5333°W42.35; -5.5333 (Fresno de la Vega)Coordinate: 42°21′00″N 5°31′59.88″W / 42.35°N 5.5333°W42.35; -5.5333 (Fresno de la Vega) Altitudine753 m s.l.m. Superficie15 km² Abitanti682 (2001) Densità45,47 ab./km² Altre i...