Bruhat decomposition

In mathematics, the Bruhat decomposition (introduced by François Bruhat for classical groups and by Claude Chevalley in general) of certain algebraic groups into cells can be regarded as a general expression of the principle of Gauss–Jordan elimination, which generically writes a matrix as a product of an upper triangular and lower triangular matrices—but with exceptional cases. It is related to the Schubert cell decomposition of flag varieties: see Weyl group for this.

More generally, any group with a (B, N) pair has a Bruhat decomposition.

Definitions

The Bruhat decomposition of is the decomposition

of as a disjoint union of double cosets of parameterized by the elements of the Weyl group . (Note that although is not in general a subgroup of , the coset is still well defined because the maximal torus is contained in .)

Examples

Let be the general linear group GLn of invertible matrices with entries in some algebraically closed field, which is a reductive group. Then the Weyl group is isomorphic to the symmetric group on letters, with permutation matrices as representatives. In this case, we can take to be the subgroup of upper triangular invertible matrices, so Bruhat decomposition says that one can write any invertible matrix as a product where and are upper triangular, and is a permutation matrix. Writing this as , this says that any invertible matrix can be transformed into a permutation matrix via a series of row and column operations, where we are only allowed to add row (resp. column ) to row (resp. column ) if (resp. ). The row operations correspond to , and the column operations correspond to .

The special linear group SLn of invertible matrices with determinant is a semisimple group, and hence reductive. In this case, is still isomorphic to the symmetric group . However, the determinant of a permutation matrix is the sign of the permutation, so to represent an odd permutation in SLn, we can take one of the nonzero elements to be instead of . Here is the subgroup of upper triangular matrices with determinant , so the interpretation of Bruhat decomposition in this case is similar to the case of GLn.

Geometry

The cells in the Bruhat decomposition correspond to the Schubert cell decomposition of flag varieties. The dimension of the cells corresponds to the length of the word in the Weyl group. Poincaré duality constrains the topology of the cell decomposition, and thus the algebra of the Weyl group; for instance, the top dimensional cell is unique (it represents the fundamental class), and corresponds to the longest element of a Coxeter group.

Computations

The number of cells in a given dimension of the Bruhat decomposition are the coefficients of the -polynomial[1] of the associated Dynkin diagram.

Double Bruhat cells

With two opposite Borel subgroups, one may intersect the Bruhat cells for each of them, giving a further decomposition

See also

Notes

References

Read other articles:

Dan WheldonDan Wheldon pada tahun 2010.LahirDaniel Clive Wheldon(1978-06-22)22 Juni 1978Emberton, Buckinghamshire, Britania RayaMeninggal16 Oktober 2011(2011-10-16) (umur 33)Las Vegas, Nevada, Amerika SerikatKebangsaanBritania RayaPekerjaanPembalap mobilTahun aktif2002–2011Tinggi177 cm (5 ft 10 in)[1]Berat65 kg (143 pon)[1]Suami/istriSusie Behm ​(m. 2008⁠–⁠2011)​Anak2Karier Seri IndyCar128 l...

 

Diagram Hertzsprung–Russell Tipe Spektrum Katai cokelat Katai putih Katai merah Subkatai Deret utama(katai) Subraksasa Bintang raksasa Raksasa terang Super raksasa Hiper raksasa Magnitudoabsolut(MV) Bintang katai merah Proxima Centauri. Bintang Katai merah adalah bintang deret utama dengan kelas M atau K yang berukuran sekitar 0.08-0.5 M⊙ dan bersuhu rendah (sekitar 2500-400 Kelvin).[1] Karena suhunya yang rendah tersebut membuat bintang ini berwarna merah, dan juga karena ukuran...

 

S.M. Entertainment Co., Ltd.Nama asli에스엠 엔터테인먼트SM 엔터테인먼트SebelumnyaSM Studio (1989–1995)JenisPublikKode emitenKRX: 041510IndustriHiburanMusikEntertainmentArtis ManagementGenreSM Music PerfomanceK-popR&BHip HopEDMTrotDidirikanSM Studio (14 Februari 1989) S.M. Entertainment (Februari 1995)PendiriLee Soo-manKantorpusat KWANGYA 83-21, Wangsimni-ro, Seongdong-gu, Seoul, Korea SelatanCabang 423, Apgujeong-ro, Gangnam-gu, Seoul, Korea Selatan (Kantor Pertama) 114 S...

Klik FilmJenisSwastaIndustriVideo sesuai permintaanDidirikan1 Oktober 2015; 8 tahun lalu (2015-10-01) di Jakarta, IndonesiaKantorpusatJakarta, IndonesiaIndukFalcon PicturesSitus webhttps://klikfilm.com KlikFilm adalah perusahaan penyedia platform layanan streaming konten over-the-top sekaligus merangkap rumah produksi dari Indonesia yang berbasis di Jakarta, yang juga merupakan anak perusahaan dari Falcon Pictures. Diluncurkan pada tahun 2015, KlikFilm menyediakan layanan video-on-demand...

 

This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: VTAR Institute – news · newspapers · books · scholar · JSTOR (June 2013) (Learn how and when to remove this template message) VTAR InstituteInstitut VTAR (Malay)拉曼技职学院 (Chinese)MottoQuality and Affordable EducationTypePrivateEstablished1990ChairmanYB Senator Datuk Yoo Wei HowPrincipal...

 

Ada usul agar Kota Quebec diganti judulnya dan dipindahkan ke Kota Québec (Diskusikan). Kota Quebec city or town (en)kota besarterritory outside RCM (en)provincial or territorial capital city in Canada (en) Québec (en)Kephek (abe) flag of Quebec City (en) coat of arms of Quebec City (en) Moto«Don de Dieu feray valoir» Dinamakan berdasarkanQuebec City–Lévis narrows (en) Tempat Negara berdaulatKanadaProvince of Canada (en)QuebecAdministrative region of Quebec (en)Capitale-Nationale (...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт...

 

История Грузииსაქართველოს ისტორია Доисторическая Грузия Шулавери-шомутепинская культураКуро-араксская культураТриалетская культураКолхидская культураКобанская культураДиаухиМушки Древняя история КолхидаАриан-КартлиИберийское царство ФарнавазидыГруз...

 

American gridiron football player (born 1986) American football player Matt GrotheNo. 8Position:QuarterbackPersonal informationBorn: (1986-09-08) September 8, 1986 (age 37)Lakeland, Florida, U.S.Height:6 ft 0 in (1.83 m)Weight:205 lb (93 kg)Career informationHigh school:Lake Gibson(Lakeland, Florida)College:South Florida (2005–2009)Undrafted:2010Career history Florida Tuskers (2010)* Toronto Argonauts (2010)* Tampa Bay Storm (2011–2012) Orlando Predators (201...

Boeing Model 42 (juga Boeing XCO-7 untuk Experimental Corps Observation Model 7) adalah pesawat biplan Amerika dikembangkan dari Airco DH.4, mengambil keuntungan dari sejumlah besar pesawat yang tersisa setelah akhir Perang Dunia I. Pengembangan dan desain Model 42 pada dasarnya adalah Airco DH-4M-1 dilengkapi dengan Boeing tailplanes baru, sayap meruncing, dan tripod landing gear. Pesawat pertama kali dibangun, ditunjuk XCO-7, telah digunakan sebagai tempat tidur uji statik, dan tidak terban...

 

Voce principale: Superkubak Belarusi. Supercoppa di Bielorussia 2023Parimatch Superkubak 2023 Competizione Superkubak Belarusi Sport Calcio Edizione 14ª Organizzatore BFF Date 25 febbraio 2023 Luogo  BielorussiaStadio Dinamo-Yuni Partecipanti 2 Risultati Vincitore Šachcër Salihorsk(2º titolo) Secondo Homel' Cronologia della competizione 2022 2024 Manuale La Superkubak Belarusi 2023 è stata la quattordicesima edizione dell'omonima competizione, disputata il 25 febbraio 2023, allo St...

 

American baseball writer and proponent of sabermetrics This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (December 2022) Craig R. Wright pioneered the use of sabermetrics in major league baseball, and is a baseball writer and historian. Career Major League Baseball He was a very early pioneer in integrating science into Major League Baseball and firs...

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. [[{{{1}}} (SNCF)|{{{1}}}]] TER Limousin merupakan jaringan rel regional yang melayani région Limousin, Prancis. Jaringan Kereta Orléans - Vierzon - Châteauroux - La Souterraine - Limoges Poitiers - Montmorillon - Bellac - Limoges Angoulême - Chaba...

 

2018 United States Supreme Court caseBenisek v. LamoneSupreme Court of the United StatesArgued March 28, 2018Decided June 18, 2018Full case nameO. John Benisek, et al. v. Linda H. Lamone, Administrator, Maryland State Board of Elections, et al.Docket no.17-333Citations585 U.S. ____ (more)138 S. Ct. 1942; 201 L. Ed. 2d 398Case historyPriorMotion to dismiss granted, Benisek v. Mack, 11 F. Supp. 3d 516 (D. Md. 2014); affirmed, 584 F. App'x 140 (4th Cir. 2014); cert. granted, 135 S. Ct. 2805 (20...

1996 filmKama Sutra: A Tale of LoveTheatrical release posterDirected byMira NairWritten byMira NairScreenplay byMira NairStory byHelena KrielMira NairBased onUtranby Wajida TabassumProduced byCaroline BaronLydia Dean PilcherMira NairStarring Naveen Andrews Sarita Choudhury Ramon Tikaram Rekha Indira Varma CinematographyDeclan QuinnEdited byKristina BodenMusic byMychael DannaProductioncompanies NDF International Pony Canyon Pandora Filmproduktion Channel Four Films Mirabai Films Distributed b...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: ISO 9001 – berita · surat kabar · buku · cendekiawan · JSTOR ISO 9001 merupakan standar internasional di bidang sistem manajemen mutu. Suatu lembaga/organisasi yang telah mendapatkan akreditasi (pengakua...

 

1233 هـمعلومات عامةجزء من تقويم هجري تاريخ البدء 10 نوفمبر 1817[1] تاريخ الانتهاء 30 أكتوبر 1818[1] المواليد قائمة مواليد 1233 هـ الوفيات قائمة وفيات 1233 هـ لديه جزء أو أجزاء محرم 1233 هـصفر 1233 هـربيع الأول 1233 هـ 1232 هـ 1234 هـ تعديل - تعديل مصدري - تعديل ويكي بيانات قرن: قرن 12 - قرن 13 - ق...

History United States NameUSS LST-986 BuilderBoston Navy Yard Laid down15 January 1944 Launched5 March 1944 Commissioned14 April 1944 Decommissioned18 July 1946 Stricken28 August 1946 Honours andawards3 battle stars (World War II) FateSold for scrapping, 4 November 1948 General characteristics Class and typeLST-542-class tank landing ship Displacement 1,490 long tons (1,514 t) light 4,080 long tons (4,145 t) full Length328 ft (100 m) Beam50 ft (15 m) Draft 8...

 

「岡島百貨店」はこの項目へ転送されています。1938年から2023年まで岡島が営業していた商業施設については「岡島百貨店 (旧店舗)」をご覧ください。 株式会社岡島OKAJIMA co.,ltd. 「ココリ」に入居した岡島(現店舗)種類 株式会社本社所在地 日本〒400-8660山梨県甲府市丸の内1丁目16-20[1]設立 1936年(昭和11年)3月1日[2]業種 小売業法人番号 6090001000349 事業内...