BAG proteins compete with Hip-1 for binding to the Hsc70/Hsp70ATPase domain and promote substrate release. All the BAG proteins have an approximately 45-amino acid BAG domain near the C terminus but differ markedly in their N-terminal regions. The protein encoded by this gene contains a WW domain in the N-terminal region and a BAG domain in the C-terminal region. The BAG domains of BAG1, BAG2, and BAG3 interact specifically with the Hsc70 ATPase domain in vitro and in mammalian cells. All 3 proteins bind with high affinity to the ATPase domain of Hsc70 and inhibit its chaperone activity in a Hip-repressible manner.[7]
Clinical significance
BAG gene has been implicated in age related neurodegenerative diseases such as Alzheimer's. It has been demonstrated that BAG1 and BAG3 regulate the proteasomal and lysosomal protein elimination pathways, respectively.[10][11] It has also been shown to be a cause of familial dilated cardiomyopathy.[12]
That BAG3 mutations are responsible for familial dilated cardiomyopathy is confirmed by another study describing 6 new molecular variants (2 missense and 4 premature Stops
). Moreover, the same publication reported that BAG3 polymorphisms are also associated with sporadic forms of the disease together with HSPB7 locus.[13]
In muscle cells, BAG3 cooperates with the molecular chaperones Hsc70 and HspB8 to induce the degradation of mechanically damaged cytoskeleton components in lysosomes. This process is called chaperone-assisted selective autophagy and is essential for maintaining muscle activity in flies, mice and men.[8]
BAG3 is able to stimulate the expression of cytoskeleton proteins in response to mechanical tension by activating the transcription regulators YAP1 and WWTR1.[9] BAG3 balances protein synthesis and protein degradation under mechanical stress.
^Villard E, Perret C, Gary F, Proust C, Dilanian G, Hengstenberg C, Ruppert V, Arbustini E, Wichter T, Germain M, Dubourg O, Tavazzi L, Aumont MC, DeGroote P, Fauchier L, Trochu JN, Gibelin P, Aupetit JF, Stark K, Erdmann J, Hetzer R, Roberts AM, Barton PJ, Regitz-Zagrosek V, Aslam U, Duboscq-Bidot L, Meyborg M, Maisch B, Madeira H, Waldenström A, Galve E, Cleland JG, Dorent R, Roizes G, Zeller T, Blankenberg S, Goodall AH, Cook S, Tregouet DA, Tiret L, Isnard R, Komajda M, Charron P, Cambien F (May 2011). "A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy". European Heart Journal. 32 (9): 1065–76. doi:10.1093/eurheartj/ehr105. PMC3086901. PMID21459883.
^Cunningham SA, Arrate MP, Brock TA, Waxham MN (November 1997). "Interactions of FLT-1 and KDR with phospholipase C gamma: identification of the phosphotyrosine binding sites". Biochem. Biophys. Res. Commun. 240 (3): 635–9. doi:10.1006/bbrc.1997.7719. PMID9398617.
^Ueno E, Haruta T, Uno T, Usui I, Iwata M, Takano A, Kawahara J, Sasaoka T, Ishibashi O, Kobayashi M (July 2001). "Potential role of Gab1 and phospholipase C-gamma in osmotic shock-induced glucose uptake in 3T3-L1 adipocytes". Horm. Metab. Res. 33 (7): 402–6. doi:10.1055/s-2001-16227. PMID11507676. S2CID9125865.
^Sozzani P, Hasan L, Séguélas MH, Caput D, Ferrara P, Pipy B, Cambon C (March 1998). "IL-13 induces tyrosine phosphorylation of phospholipase C gamma-1 following IRS-2 association in human monocytes: relationship with the inhibitory effect of IL-13 on ROI production". Biochem. Biophys. Res. Commun. 244 (3): 665–70. doi:10.1006/bbrc.1998.8314. PMID9535722.
^Kim MJ, Chang JS, Park SK, Hwang JI, Ryu SH, Suh PG (July 2000). "Direct interaction of SOS1 Ras exchange protein with the SH3 domain of phospholipase C-gamma1". Biochemistry. 39 (29): 8674–82. doi:10.1021/bi992558t. PMID10913276.
^Ohmichi M, Decker SJ, Pang L, Saltiel AR (August 1991). "Nerve growth factor binds to the 140 kd trk proto-oncogene product and stimulates its association with the src homology domain of phospholipase C gamma 1". Biochem. Biophys. Res. Commun. 179 (1): 217–23. doi:10.1016/0006-291x(91)91357-i. hdl:2027.42/29169. PMID1715690.
^Suzuki S, Mizutani M, Suzuki K, Yamada M, Kojima M, Hatanaka H, Koizumi S (June 2002). "Brain-derived neurotrophic factor promotes interaction of the Nck2 adaptor protein with the TrkB tyrosine kinase receptor". Biochem. Biophys. Res. Commun. 294 (5): 1087–92. doi:10.1016/S0006-291X(02)00606-X. PMID12074588.
Maruyama K, Sugano S (Jan 1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID8125298.
Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (Oct 1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID9373149.
Antoku K, Maser RS, Scully WJ, Delach SM, Johnson DE (Sep 2001). "Isolation of Bcl-2 binding proteins that exhibit homology with BAG-1 and suppressor of death domains protein". Biochemical and Biophysical Research Communications. 286 (5): 1003–10. doi:10.1006/bbrc.2001.5512. PMID11527400.
Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ (Jan 2005). "Immunoaffinity profiling of tyrosine phosphorylation in cancer cells". Nature Biotechnology. 23 (1): 94–101. doi:10.1038/nbt1046. PMID15592455. S2CID7200157.
Tao WA, Wollscheid B, O'Brien R, Eng JK, Li XJ, Bodenmiller B, Watts JD, Hood L, Aebersold R (Aug 2005). "Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry". Nature Methods. 2 (8): 591–8. doi:10.1038/nmeth776. PMID16094384. S2CID20475874.
Beausoleil SA, Villén J, Gerber SA, Rush J, Gygi SP (Oct 2006). "A probability-based approach for high-throughput protein phosphorylation analysis and site localization". Nature Biotechnology. 24 (10): 1285–92. doi:10.1038/nbt1240. PMID16964243. S2CID14294292.