Bézout domain

In mathematics, a Bézout domain is an integral domain in which the sum of two principal ideals is also a principal ideal. This means that Bézout's identity holds for every pair of elements, and that every finitely generated ideal is principal. Bézout domains are a form of Prüfer domain.

Any principal ideal domain (PID) is a Bézout domain, but a Bézout domain need not be a Noetherian ring, so it could have non-finitely generated ideals; if so, it is not a unique factorization domain (UFD), but is still a GCD domain. The theory of Bézout domains retains many of the properties of PIDs, without requiring the Noetherian property.

Bézout domains are named after the French mathematician Étienne Bézout.

Examples

  • All PIDs are Bézout domains.
  • Examples of Bézout domains that are not PIDs include the ring of entire functions (functions holomorphic on the whole complex plane) and the ring of all algebraic integers.[1] In case of entire functions, the only irreducible elements are functions associated to a polynomial function of degree 1, so an element has a factorization only if it has finitely many zeroes. In the case of the algebraic integers there are no irreducible elements at all, since for any algebraic integer its square root (for instance) is also an algebraic integer. This shows in both cases that the ring is not a UFD, and so certainly not a PID.
  • Valuation rings are Bézout domains. Any non-Noetherian valuation ring is an example of a non-noetherian Bézout domain.
  • The following general construction produces a Bézout domain S that is not a UFD from any Bézout domain R that is not a field, for instance from a PID; the case R = Z is the basic example to have in mind. Let F be the field of fractions of R, and put S = R + XF[X], the subring of polynomials in F[X] with constant term in R. This ring is not Noetherian, since an element like X with zero constant term can be divided indefinitely by noninvertible elements of R, which are still noninvertible in S, and the ideal generated by all these quotients of is not finitely generated (and so X has no factorization in S). One shows as follows that S is a Bézout domain.
  1. It suffices to prove that for every pair a, b in S there exist s, t in S such that as + bt divides both a and b.
  2. If a and b have a common divisor d, it suffices to prove this for a/d and b/d, since the same s, t will do.
  3. We may assume the polynomials a and b nonzero; if both have a zero constant term, then let n be the minimal exponent such that at least one of them has a nonzero coefficient of Xn; one can find f in F such that fXn is a common divisor of a and b and divide by it.
  4. We may therefore assume at least one of a, b has a nonzero constant term. If a and b viewed as elements of F[X] are not relatively prime, there is a greatest common divisor of a and b in this UFD that has constant term 1, and therefore lies in S; we can divide by this factor.
  5. We may therefore also assume that a and b are relatively prime in F[X], so that 1 lies in aF[X] + bF[X], and some constant polynomial r in R lies in aS + bS. Also, since R is a Bézout domain, the gcd d in R of the constant terms a0 and b0 lies in a0R + b0R. Since any element without constant term, like aa0 or bb0, is divisible by any nonzero constant, the constant d is a common divisor in S of a and b; we shall show it is in fact a greatest common divisor by showing that it lies in aS + bS. Multiplying a and b respectively by the Bézout coefficients for d with respect to a0 and b0 gives a polynomial p in aS + bS with constant term d. Then pd has a zero constant term, and so is a multiple in S of the constant polynomial r, and therefore lies in aS + bS. But then d does as well, which completes the proof.

Properties

A ring is a Bézout domain if and only if it is an integral domain in which any two elements have a greatest common divisor that is a linear combination of them: this is equivalent to the statement that an ideal which is generated by two elements is also generated by a single element, and induction demonstrates that all finitely generated ideals are principal. The expression of the greatest common divisor of two elements of a PID as a linear combination is often called Bézout's identity, whence the terminology.

Note that the above gcd condition is stronger than the mere existence of a gcd. An integral domain where a gcd exists for any two elements is called a GCD domain and thus Bézout domains are GCD domains. In particular, in a Bézout domain, irreducibles are prime (but as the algebraic integer example shows, they need not exist).

For a Bézout domain R, the following conditions are all equivalent:

  1. R is a principal ideal domain.
  2. R is Noetherian.
  3. R is a unique factorization domain (UFD).
  4. R satisfies the ascending chain condition on principal ideals (ACCP).
  5. Every nonzero nonunit in R factors into a product of irreducibles (R is an atomic domain).

The equivalence of (1) and (2) was noted above. Since a Bézout domain is a GCD domain, it follows immediately that (3), (4) and (5) are equivalent. Finally, if R is not Noetherian, then there exists an infinite ascending chain of finitely generated ideals, so in a Bézout domain an infinite ascending chain of principal ideals. (4) and (2) are thus equivalent.

A Bézout domain is a Prüfer domain, i.e., a domain in which each finitely generated ideal is invertible, or said another way, a commutative semihereditary domain.)

Consequently, one may view the equivalence "Bézout domain iff Prüfer domain and GCD-domain" as analogous to the more familiar "PID iff Dedekind domain and UFD".

Prüfer domains can be characterized as integral domains whose localizations at all prime (equivalently, at all maximal) ideals are valuation domains. So the localization of a Bézout domain at a prime ideal is a valuation domain. Since an invertible ideal in a local ring is principal, a local ring is a Bézout domain iff it is a valuation domain. Moreover, a valuation domain with noncyclic (equivalently non-discrete) value group is not Noetherian, and every totally ordered abelian group is the value group of some valuation domain. This gives many examples of non-Noetherian Bézout domains.

In noncommutative algebra, right Bézout domains are domains whose finitely generated right ideals are principal right ideals, that is, of the form xR for some x in R. One notable result is that a right Bézout domain is a right Ore domain. This fact is not interesting in the commutative case, since every commutative domain is an Ore domain. Right Bézout domains are also right semihereditary rings.

Modules over a Bézout domain

Some facts about modules over a PID extend to modules over a Bézout domain. Let R be a Bézout domain and M finitely generated module over R. Then M is flat if and only if it is torsion-free.[2]

See also

References

  1. ^ Cohn 1968.
  2. ^ Bourbaki 1989, Ch I, §2, no 4, Proposition 3

Bibliography

  • Cohn, P. M. (1968), "Bezout rings and their subrings" (PDF), Mathematical Proceedings of the Cambridge Philosophical Society, 64 (2): 251–264, doi:10.1017/s0305004100042791, MR 0222065
  • Helmer, Olaf (1940), "Divisibility properties of integral functions", Duke Math. J., 6 (2): 345–356, doi:10.1215/s0012-7094-40-00626-3, ISSN 0012-7094, MR 0001851
  • Kaplansky, Irving (1970), Commutative rings, Boston, Mass.: Allyn and Bacon Inc., pp. x+180, MR 0254021
  • Bourbaki, Nicolas (1989), Commutative algebra
  • "Bezout ring", Encyclopedia of Mathematics, EMS Press, 2001 [1994]

Read other articles:

Salah satu event diskusi oleh CTI Cak Tarno Institute Cak Tarno Institute adalah komunitas yang berfokus terhadap dunia pendidikan, CTI digunakan sebagai ruang diskursus untuk mengembangkan ilmu pengetahuan. Institut ini tentu bukanlah institut dalam arti sebenarnya. CTI didirikan pada 14 Februari 2005 sebagai wadah diskusi dan ruang bertukar pikiran. Nama Cak Tarno Institute diambil dari nama pendiri sekaligus Rektor dan Sokoguru CTI, yakni Cak Tarno, pedagang buku di sebuah kios kecil yang ...

 

 

Bagian dari seri tentangHierarki Gereja KatolikSanto Petrus Gelar Gerejawi (Jenjang Kehormatan) Paus Kardinal Kardinal Kerabat Kardinal pelindung Kardinal mahkota Kardinal vikaris Moderator kuria Kapelan Sri Paus Utusan Sri Paus Kepala Rumah Tangga Kepausan Nunsio Apostolik Delegatus Apostolik Sindik Apostolik Visitor apostolik Vikaris Apostolik Eksarkus Apostolik Prefek Apostolik Asisten Takhta Kepausan Eparkus Metropolitan Batrik Uskup Uskup agung Uskup emeritus Uskup diosesan Uskup agung u...

 

 

GuldbaggenPenghargaan terkini: Penghargaan Guldbagge ke-53Logo resmiDeskripsiKesempurnaan dalam film SwediaNegaraSwediaDipersembahkan olehSwedish Film InstituteDiberikan perdana1964Situs webSitus web resmi Penghargaan Guldbagge (bahasa Swedia: Guldbaggen, Inggris: Kumbang Emas) adalah sebuah acara penghargaan film Swedia resmi dan tahunan yang menghargai pengabdian dalam industri film Swedia. Para pemenang dianugerahi sebuah piala yang menggambarkan seekor kumbang mawar, yang lebih di...

Systematic killing of members of a specific gender This article appears to be slanted towards recent events. Please try to keep recent events in historical perspective and add more content related to non-recent events. (October 2018) Part of a series onHomicide Murder Note: Varies by jurisdiction Assassination Child murder Consensual homicide Contract killing Crime of passion Depraved-heart murder Felony murder rule Foeticide Honor killing Human cannibalism Child cannibalism Human sacrifice C...

 

 

Northern Irish bus manufacturer Not to be confused with Wightbus, the former bus operator. WrightbusCompany typePrivateIndustryTransportFounded1946; 78 years ago (1946)FounderRobert WrightHeadquartersBallymena, Northern IrelandKey peopleJean-Marc Gales (CEO)[1]ProductsBus and coachworkRevenue£181 million (2017)OwnerJo Bamford[2]Number of employees860 (2022)[3]ParentBamford Bus CompanyWebsitewrightbus.com Simplified Wrightbus logo Wrightbus[4]...

 

 

Ownership of creative expressions and processes Intellectual Property redirects here. For the film, see Intellectual Property (film). For the Waterparks album, see Intellectual Property (album). Intellectual property Authors' rights Copyleft Copyright Database right Farmers' rights Geographical indication Indigenous intellectual property Industrial design right Integrated circuit layout design protection Moral rights Patent Peasants' rights Plant breeders' rights Plant genetic resources Relat...

1955 American animated film This article is about the 1955 Walt Disney animated film. For the live-action remake, see Lady and the Tramp (2019 film). For the 2019 film's soundtrack album, see Lady and the Tramp (soundtrack). Lady and the TrampTheatrical release posterDirected by Clyde Geronimi Wilfred Jackson Hamilton Luske Story by Erdman Penner Joe Rinaldi Ralph Wright Don DaGradi Joe Grant Based onHappy Dan, the Cynical Dogby Ward GreeneProduced byWalt DisneyStarring Barbara Luddy Larry Ro...

 

 

Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна  Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского пос�...

 

 

The following is a list of Playboy Playmates of 1991. Playboy magazine names its Playmate of the Month each month throughout the year. January Main article: Stacy Arthur Stacy ArthurPersonal detailsBornJune 4, 1968Naperville, IllinoisDiedApril 5, 2019 (aged 50)Height5 ft 7 in (1.70 m) Stacy Leigh Arthur (June 4, 1968-April 5, 2019, in Naperville, Illinois) was an American model and actress. She was chosen as Playboy's Playmate of the Month for January, 1991. Arthur was also Mr...

Ute

Para otros usos de este término, véase UTE (desambiguación). Ute Ubicación  Estados UnidosDescendencia ~ 10 000Idioma Inglés y UteReligión CristianismoEtnias relacionadas Grupos étnicos Uto-Aztecas[editar datos en Wikidata] Los ute, uta o yutas son una tribu india norteamericana cuyo idioma pertenece a la familia lingüística uto-azteca; son un grupo númico meridional, cuyo nombre proviene de entaw o yuta, “protectores de las montañas”. Ellos, sin embargo, s...

 

 

B.P. Makadada Duta Besar Indonesia untuk MyanmarMasa jabatan25 Maret 1989 – 1 Februari 1993PresidenSoehartoPendahuluSoeharto PartoatmodjoPenggantiMochammad Sanoesi Informasi pribadiLahir(1936-09-11)11 September 1936Manado, Sulawesi Utara, Hindia BelandaMeninggal1 Februari 1999(1999-02-01) (umur 62)Karier militerPihak IndonesiaDinas/cabang TNI Angkatan DaratMasa dinas1960 – 1991Pangkat Mayor Jenderal TNINRP18506SatuanKavaleriSunting kotak info • ...

 

 

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

Allegation of genocide committed against Israelis Allegations of genocide in the 2023 Hamas-led attack on IsraelPart of the Israel–Hamas warBlood stains in the kitchen of a house following the Be'eri massacreLocationGaza envelope, Southern District, IsraelDate7–8 October 2023TargetIsraelisAttack typeMass shooting, immolation, genocidal rape (alleged)Deaths1,163 killed[1]Accused Hamas Palestinian Islamic Jihad PRC PFLP DFLP al-Aqsa Martyrs' Brigades Pa...

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) أي كومي (باليابانية: 久米愛)‏    معلومات شخصية الميلاد 7 يوليو 1911 [1]  محافظة أوساكا  تاريخ الوفاة 14 يوليو 1976 (65 سنة)   مواطنة اليابان  الحياة ال...

 

 

King of León from 931 to 951 You can help expand this article with text translated from the corresponding article in Spanish. (June 2012) Click [show] for important translation instructions. View a machine-translated version of the Spanish article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated...

Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Heer (Begriffsklärung) aufgeführt. Panzergrenadiere des Heeres der Bundeswehr BTR-80 der Landstreitkräfte der russischen Streitkräfte Das Heer eines Staates umfasst meist alle Landstreitkräfte als Teilstreitkraft. Aufgabe des Heeres ist primär die Durchführung von Landoperationen zur Aufklärung und Bekämpfung feindlicher Streitkräfte. Das Heer gliedert sich in Kampftruppen, Kampfunterstützungstruppen, Logisti...

 

 

Indonesia padaOlimpiade Musim Panas 1972Kode IOCINAKONKomite Olimpiade IndonesiaSitus webnocindonesia.idPenampilan pada Olimpiade Musim Panas 1972 di MünchenPeserta6 dalam 5 cabang olahragaPembawa benderaWiem GommiesMedali 0 0 0 Total 0 Penampilan pada Olimpiade Musim Panas (ringkasan)195219561960196419681972197619801984198819921996200020042008201220162020 Indonesia bertanding dalam Olimpiade München 1972 yang berlangsung di München, Jerman pada tanggal 26 Agustus - 10 September 1972....

 

 

Lambang Komune Mouroux. MourouxNegaraPrancisArondisemenMeauxKantonCoulommiersAntarkomuneCommunauté de communes de la Brie des TempliersPemerintahan • Wali kota (2008-2014) Elisabeth Escuyer • Populasi14.201Kode INSEE/pos77320 / 2 Population sans doubles comptes: penghitungan tunggal penduduk di komune lain (e.g. mahasiswa dan personil militer). Mouroux merupakan sebuah komune di departemen Seine-et-Marne di region Île-de-France di utara-tengah Prancis. Demografi...

此條目包含過多僅特定讀者會感興趣的過度細節內容。 (2024年7月3日)請重新整理本條目以切合主題,並移除与維基百科內容方針相悖的過度細節內容。詳情請參見討論頁。 研華股份有限公司Advantech Co., Ltd.公司類型上市公司股票代號臺證所:2395(1999年12月13日上市)統一編號05155853 成立1983年5月創辦人劉克振、黃育民及莊永順代表人物董事長:劉克振綜合經營管理總經理、財�...

 

 

محتوى هذه المقالة بحاجة للتحديث. فضلًا، ساعد بتحديثه ليعكس الأحداث الأخيرة وليشمل المعلومات الموثوقة المتاحة حديثًا. (أبريل 2019) ديفيد جوفان (بالفرنسية: David Goffin)‏  معلومات شخصية الميلاد 7 ديسمبر 1990 (العمر 33 سنة)لييج، بلجيكا الطول 1.80 م (5 قدم 11 بوصة) الإقامة مونت كارل�...