Unique factorization domain

In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an integral domain (a nontrivial commutative ring in which the product of any two non-zero elements is non-zero) in which every non-zero non-unit element can be written as a product of irreducible elements, uniquely up to order and units.

Important examples of UFDs are the integers and polynomial rings in one or more variables with coefficients coming from the integers or from a field.

Unique factorization domains appear in the following chain of class inclusions:

rngsringscommutative ringsintegral domainsintegrally closed domainsGCD domainsunique factorization domainsprincipal ideal domainsEuclidean domainsfieldsalgebraically closed fields

Definition

Formally, a unique factorization domain is defined to be an integral domain R in which every non-zero element x of R which is not a unit can be written as a finite product of irreducible elements pi of R:

x = p1 p2 ⋅⋅⋅ pn with n ≥ 1

and this representation is unique in the following sense: If q1, ..., qm are irreducible elements of R such that

x = q1 q2 ⋅⋅⋅ qm with m ≥ 1,

then m = n, and there exists a bijective map φ : {1, ..., n} → {1, ..., m} such that pi is associated to qφ(i) for i ∈ {1, ..., n}.

Examples

Most rings familiar from elementary mathematics are UFDs:

  • All principal ideal domains, hence all Euclidean domains, are UFDs. In particular, the integers (also see Fundamental theorem of arithmetic), the Gaussian integers and the Eisenstein integers are UFDs.
  • If R is a UFD, then so is R[X], the ring of polynomials with coefficients in R. Unless R is a field, R[X] is not a principal ideal domain. By induction, a polynomial ring in any number of variables over any UFD (and in particular over a field or over the integers) is a UFD.
  • The formal power series ring K[[X1, ..., Xn]] over a field K (or more generally over a regular UFD such as a PID) is a UFD. On the other hand, the formal power series ring over a UFD need not be a UFD, even if the UFD is local. For example, if R is the localization of k[x, y, z]/(x2 + y3 + z7) at the prime ideal (x, y, z) then R is a local ring that is a UFD, but the formal power series ring R[[X]] over R is not a UFD.
  • The Auslander–Buchsbaum theorem states that every regular local ring is a UFD.
  • is a UFD for all integers 1 ≤ n ≤ 22, but not for n = 23.
  • Mori showed that if the completion of a Zariski ring, such as a Noetherian local ring, is a UFD, then the ring is a UFD.[1] The converse of this is not true: there are Noetherian local rings that are UFDs but whose completions are not. The question of when this happens is rather subtle: for example, for the localization of k[x, y, z]/(x2 + y3 + z5) at the prime ideal (x, y, z), both the local ring and its completion are UFDs, but in the apparently similar example of the localization of k[x, y, z]/(x2 + y3 + z7) at the prime ideal (x, y, z) the local ring is a UFD but its completion is not.
  • Let be a field of any characteristic other than 2. Klein and Nagata showed that the ring R[X1, ..., Xn]/Q is a UFD whenever Q is a nonsingular quadratic form in the Xs and n is at least 5. When n = 4, the ring need not be a UFD. For example, R[X, Y, Z, W]/(XYZW) is not a UFD, because the element XY equals the element ZW so that XY and ZW are two different factorizations of the same element into irreducibles.
  • The ring Q[x, y]/(x2 + 2y2 + 1) is a UFD, but the ring Q(i)[x, y]/(x2 + 2y2 + 1) is not. On the other hand, The ring Q[x, y]/(x2 + y2 − 1) is not a UFD, but the ring Q(i)[x, y]/(x2 + y2 − 1) is.[2] Similarly the coordinate ring R[X, Y, Z]/(X2 + Y2 + Z2 − 1) of the 2-dimensional real sphere is a UFD, but the coordinate ring C[X, Y, Z]/(X2 + Y2 + Z2 − 1) of the complex sphere is not.
  • Suppose that the variables Xi are given weights wi, and F(X1, ..., Xn) is a homogeneous polynomial of weight w. Then if c is coprime to w and R is a UFD and either every finitely generated projective module over R is free or c is 1 mod w, the ring R[X1, ..., Xn, Z]/(ZcF(X1, ..., Xn)) is a UFD.[3]

Non-examples

  • The quadratic integer ring of all complex numbers of the form , where a and b are integers, is not a UFD because 6 factors as both 2×3 and as . These truly are different factorizations, because the only units in this ring are 1 and −1; thus, none of 2, 3, , and are associate. It is not hard to show that all four factors are irreducible as well, though this may not be obvious.[4] See also Algebraic integer.
  • For a square-free positive integer d, the ring of integers of will fail to be a UFD unless d is a Heegner number.
  • The ring of formal power series over the complex numbers is a UFD, but the subring of those that converge everywhere, in other words the ring of entire functions in a single complex variable, is not a UFD, since there exist entire functions with an infinity of zeros, and thus an infinity of irreducible factors, while a UFD factorization must be finite, e.g.:

Properties

Some concepts defined for integers can be generalized to UFDs:

  • In UFDs, every irreducible element is prime. (In any integral domain, every prime element is irreducible, but the converse does not always hold. For instance, the element zK[x, y, z]/(z2xy) is irreducible, but not prime.) Note that this has a partial converse: a domain satisfying the ACCP is a UFD if and only if every irreducible element is prime.
  • Any two elements of a UFD have a greatest common divisor and a least common multiple. Here, a greatest common divisor of a and b is an element d that divides both a and b, and such that every other common divisor of a and b divides d. All greatest common divisors of a and b are associated.
  • Any UFD is integrally closed. In other words, if R is a UFD with quotient field K, and if an element k in K is a root of a monic polynomial with coefficients in R, then k is an element of R.
  • Let S be a multiplicatively closed subset of a UFD A. Then the localization S−1A is a UFD. A partial converse to this also holds; see below.

Equivalent conditions for a ring to be a UFD

A Noetherian integral domain is a UFD if and only if every height 1 prime ideal is principal (a proof is given at the end). Also, a Dedekind domain is a UFD if and only if its ideal class group is trivial. In this case, it is in fact a principal ideal domain.

In general, for an integral domain A, the following conditions are equivalent:

  1. A is a UFD.
  2. Every nonzero prime ideal of A contains a prime element.[5]
  3. A satisfies ascending chain condition on principal ideals (ACCP), and the localization S−1A is a UFD, where S is a multiplicatively closed subset of A generated by prime elements. (Nagata criterion)
  4. A satisfies ACCP and every irreducible is prime.
  5. A is atomic and every irreducible is prime.
  6. A is a GCD domain satisfying ACCP.
  7. A is a Schreier domain,[6] and atomic.
  8. A is a pre-Schreier domain and atomic.
  9. A has a divisor theory in which every divisor is principal.
  10. A is a Krull domain in which every divisorial ideal is principal (in fact, this is the definition of UFD in Bourbaki.)
  11. A is a Krull domain and every prime ideal of height 1 is principal.[7]

In practice, (2) and (3) are the most useful conditions to check. For example, it follows immediately from (2) that a PID is a UFD, since every prime ideal is generated by a prime element in a PID.

For another example, consider a Noetherian integral domain in which every height one prime ideal is principal. Since every prime ideal has finite height, it contains a height one prime ideal (induction on height) that is principal. By (2), the ring is a UFD.

See also

Citations

  1. ^ Bourbaki (1972), 7.3, no 6, Proposition 4
  2. ^ Samuel (1964), p. 35
  3. ^ Samuel (1964), p. 31
  4. ^ Artin (2011), p. 360
  5. ^ Kaplansky
  6. ^ A Schreier domain is an integrally closed integral domain where, whenever x divides yz, x can be written as x = x1 x2 so that x1 divides y and x2 divides z. In particular, a GCD domain is a Schreier domain
  7. ^ Bourbaki (1972), 7.3, no 2, Theorem 1.

References

  • Artin, Michael (2011). Algebra. Prentice Hall. ISBN 978-0-13-241377-0.
  • Bourbaki, N. (1972). Commutative algebra. Paris, Hermann; Reading, Mass., Addison-Wesley Pub. Co. ISBN 9780201006445.
  • Edwards, Harold M. (1990). Divisor Theory. Boston: Birkhäuser. ISBN 978-0-8176-3448-3.
  • Hartley, B.; T.O. Hawkes (1970). Rings, modules and linear algebra. Chapman and Hall. ISBN 0-412-09810-5. Chap. 4.
  • Lang, Serge (1993), Algebra (Third ed.), Reading, Mass.: Addison-Wesley, ISBN 978-0-201-55540-0, Zbl 0848.13001 Chapter II.5
  • Sharpe, David (1987). Rings and factorization. Cambridge University Press. ISBN 0-521-33718-6.
  • Samuel, Pierre (1964), Murthy, M. Pavman (ed.), Lectures on unique factorization domains, Tata Institute of Fundamental Research Lectures on Mathematics, vol. 30, Bombay: Tata Institute of Fundamental Research, MR 0214579
  • Samuel, Pierre (1968). "Unique factorization". The American Mathematical Monthly. 75 (9): 945–952. doi:10.2307/2315529. ISSN 0002-9890. JSTOR 2315529.
  • Weintraub, Steven H. (2008). Factorization: Unique and Otherwise. Wellesley, Mass.: A K Peters/CRC Press. ISBN 978-1-56881-241-0.

Read other articles:

Запрос «Направленная кристаллизация» перенаправляется сюда. На эту тему нужно создать отдельную статью. Фазовые переходы первого рода на фазовой диаграмме Кристаллизация воды с образованием льда Ускоренная киносъёмка процесса роста кристалла лимонной кислоты. На вид...

 

 

Mount Rushmore National MemorialIUCN Kategori III (Monumen Alam)Gunung Rushmore dengan pahatan wajah George Washington, Thomas Jefferson, Theodore Roosevelt, dan Abraham Lincoln (dari kiri ke kanan)LetakPennington County, South DakotaKota terdekatKeystone, South DakotaLuas1.278 acres[convert: unit tak dikenal]Diizinkan3 Maret 1925Pengunjung2,431,231 (tahun 2016)[1]Pihak pengelolaNational Park ServiceSitus webMount Rushmore National Memorial Gunung Rushmore adalah gunung terkenal ...

 

 

Pour les articles homonymes, voir Barjavel. René BarjavelRené Barjavel en 1949. Photo d'identité (Sacem).BiographieNaissance 24 janvier 1911Nyons (Drôme, France)Décès 24 novembre 1985 (à 74 ans)14e arrondissement de Paris (France)Sépulture Bellecombe-TarendolNom de naissance René Henri Gustave BarjavelNationalité françaiseActivité Romancier, nouvelliste, essayiste, chroniqueur, journaliste, scénariste, dialoguistePériode d'activité 1942-1985Autres informationsConflit Seco...

Gradualisme filetik dibandingkan dengan keseimbangan bersela (bawah). Gradualisme filetik adalah model evolusi yang menjelaskan bahwa sebagian besar spesiasi bersifat lambat, seragam, dan berangsur-angsur.[1] Seluruh spesies secara perlahan mengalami perubahan menjadi spesies yang baru. Dalam sudut pandang ini, tidak ada garis batas yang jelas antara spesies nenek moyang dengan spesies baru. Gradualisme filetik sering kali dianggap berlawanan dengan teori keseimbangan bersela, yang me...

 

 

Istilah rasul dikenal dalam Islam dan Kristen. Meski demikian, terdapat perbedaan pemahaman mengenai istilah tersebut. Dalam Islam, rasul adalah seorang Nabi dan Rasul yang mendapat wahyu dari Allah SWT, tidak hanya untuk dirinya sendiri namun wajib menyampaikan wahyu yang dia terima kepada umat, rasul terahir yang diutus oleh Allah SWT ialah Nabi Muhammad SAW membawa syariat-syariat baru yang tidak menghapuskan syariat-syariat dari rasul sebelumnya[1]. Berbeda dengan nabi biasa yang ...

 

 

Curvas de variación estacional del estero Catemu en Santa Rosa. El diagrama muestra con la línea de triángulos rojo ocre, las medianas mensuales del caudal. Estas son los caudales mínimos que lleva el estero el 50% de los años. Se dice entonces que la probabilidad de excedencia de ese caudal es de un 50%. Las otras líneas muestran otras probabilidades de excedencia. Un caudal anual representativo del estero puede ser la media (estadística) de la serie 50%, en este caso 0,78 m³/s. Tamb...

Japanese video game publisher Entertainment Software Publishing, Inc.ESP's former headquarters in Shibuya, TokyoNative name株式会社エンターテインメント ソフトウェア パブリッシングRomanized nameKabushiki-gaisha Entāteinmento Sofutō~ea PaburisshinguCompany typeSubsidiaryIndustryVideo gamesFoundedNovember 1997; 26 years ago (1997-11)Defunct1 April 2010; 14 years ago (2010-04-01)FateMerged with D3 PublisherHeadquartersShibuya, ...

 

 

Basilika Dikandung Tanpa NodaBasilika Minor Dikandung Tanpa Nodabahasa Polandia: Bazylika na Świętej GórzeBasilika Dikandung Tanpa NodaLokasiŚwięta GóraNegara PolandiaDenominasiGereja Katolik RomaArsitekturStatusBasilika minorStatus fungsionalAktif Basilika Dikandung Tanpa Noda (bahasa Polandia: Bazylika na Świętej Górze) adalah sebuah gereja basilika minor Katolik yang terletak di Święta Góra, Polandia. Basilika ini ditetapkan statusnya pada 1970 dan didedikasikan ke...

 

 

Pour les articles homonymes, voir Grand Prix des Nations. Grand Prix moto d'Italie Dani Pedrosa, Scott Redding et Maverick Viñales au Grand Prix moto d'Italie 2016Généralités Sport Vitesse moto Création 1949 Autre(s) nom(s) Grand Prix des Nations Éditions 74 (en 2023) Catégorie Championnats du monde de vitesse moto Site(s) Mugello Circuit (1976, 1978, 1985, 1992, 1994–2019, 2021–présent) Misano Circuit (1980, 1982, 1984, 1989–1991, 1993) Imola Circuit (1969, 1972, 1974–19...

Questa voce sull'argomento calciatori tedeschi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Phil Neumann Nazionalità  Germania Altezza 178 cm Peso 74 kg Calcio Ruolo Difensore Squadra  Hannover 96 Carriera Giovanili  Schalke 04 Squadre di club1 2016-2017 Schalke 04 II15 (1)2017-2019 Ingolstadt 0424 (1)2019-2022 Holstein Kiel72 (0)2022- Hannover 9624 (0) Nazionale ...

 

 

Ini adalah nama Korea; marganya adalah Kim. Kim Hye-yoonKim Hye-yoon di 2020Lahir10 November 1996 (umur 27)Seongnam, Gyeonggi, Korea Selatan[1]PendidikanUniversitas Konkuk [ko] - Film Studies[2]PekerjaanAktrisTahun aktif2013-sekarangAgenSidusHQ (2019 - sekarang)[3]Nama KoreaHangul김혜윤 Hanja金惠奫[1] Alih AksaraGim Hye-yunMcCune–ReischauerKim Hye-yun Kim Hye-yoon (lahir 10 November 1996) adalah aktris asal Korea Selatan. Ia palin...

 

 

Avetheropoda Periode Jura Tengah–Masa kini, 174–0 jtyl PreЄ Є O S D C P T J K Pg N Kemungkinan catatan Jura Awal Avetheropoda Cetakan kerangka Allosaurus fragilis, Museum Sejarah Alam San DiegoSeekor burung kiwi dan telurnya (1913)TaksonomiKerajaanAnimaliaFilumChordataKelasReptiliaOrdoSaurischiaTanpa nilaiAvetheropoda Gregory Scott Paul, 1988 Tata namaSinonim takson Neotetanurae Sereno et al., 1994 Orionides?[1] Carrano, Benson & Sampson, 2012 Subkelompok †Gasosau...

English footballer For the film director, see Thomas H. Ince. Tom Ince Ince playing for Hull City in 2014Personal informationFull name Thomas Christopher Ince[1]Date of birth (1992-01-30) 30 January 1992 (age 32)[2]Place of birth Stockport, EnglandHeight 5 ft 10 in (1.78 m)[3]Position(s) Attacking midfielder, winger, forwardTeam informationCurrent team WatfordNumber 7Youth career2008–2010 LiverpoolSenior career*Years Team Apps (Gls)2010–2011 Liv...

 

 

L'età di Cosimo de' MediciRitratto di Cosimo de' MediciPaeseItalia Anno1972 Formatominiserie TV Generestorico Puntate3 Durata250 min Lingua originaleitaliano, latino Rapporto1.33:1 CreditiRegiaRoberto Rossellini Soggettodalle opere di Niccolò Machiavelli e Francesco Guicciardini SceneggiaturaRoberto Rossellini, Marcella Mariani, Luciano Scaffa Interpreti e personaggi Marcello Di Falco: Cosimo de' Medici Virginio Gazzolo: Leon Battista Alberti Tom Felleghy: Rinaldo degli Albizzi Mario Erpich...

 

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要擴充。 (2013年1月1日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。请在擴充條目後將此模板移除。 此條目需要补充更多来源。 (2013年1月1日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的...

هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد  القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالي�...

 

 

Further information: British Empire in World War II Part of a series on theMilitary history ofSouth Africa Conflicts Khoikhoi–Dutch Wars Napoleonic Wars Xhosa Wars Ndwandwe–Zulu War South African Wars Anglo–Zulu War First Boer War Second Boer War First World War Second World War Korean War Border War National Defence Force Army Air Force History Navy Medical Services Special Forces Historical forces Union Defence Force South African Defence Force Lists Wars Battles Military chiefs vte ...

 

 

Taça de Portugal 2013-2014Taça de Portugal Millennium 2013-2014 Competizione Taça de Portugal Sport Calcio Edizione 74ª Date dal 1º settembre 2013al 18 maggio 2014 Luogo  Portogallo Partecipanti 156 Risultati Vincitore  Benfica(25º titolo) Secondo  Rio Ave Statistiche Incontri disputati 167 Cronologia della competizione 2012-2013 2014-2015 Manuale La Taça de Portugal 2013-2014 è stata la 74ª edizione del torneo. È iniziata il 1º settembre 2013 e si è c...

Về những tàu chiến Brazil khác mang cùng tên, xin xem Amazonas (tàu chiến Brazil). Tàu ngầm USS Greenfish (SS-351) vào khoảng thập niên 1960 Lịch sử Hoa Kỳ Tên gọi USS GreenfishĐặt tên theo cá tuyết Murray[1]Xưởng đóng tàu Electric Boat Company, Groton, Connecticut[2]Đặt lườn 29 tháng 6, 1944 [2]Hạ thủy 21 tháng 12, 1945 [2]Người đỡ đầu bà Thomas J. DoyleNhập biên chế 7 tháng 6, 1946 [2...

 

 

Cemetery in Gibraltar Trafalgar CemeteryPanoramic view of the Trafalgar CemeteryDetailsEstablished1798LocationSouthport Ditch, Trafalgar RoadCountryGibraltarCoordinates36°08′05″N 5°21′08″W / 36.134747°N 5.352273°W / 36.134747; -5.352273Owned byGovernment of GibraltarFind a GraveTrafalgar Cemetery The Trafalgar Cemetery is a cemetery in the British Overseas Territory of Gibraltar. Formerly known as the Southport Ditch Cemetery, it occupies a small area of la...