Algebraic connectivity

An example graph, with 6 vertices, diameter 3, connectivity 1, and algebraic connectivity 0.722

The algebraic connectivity (also known as Fiedler value or Fiedler eigenvalue after Miroslav Fiedler) of a graph G is the second-smallest eigenvalue (counting multiple eigenvalues separately) of the Laplacian matrix of G.[1] This eigenvalue is greater than 0 if and only if G is a connected graph. This is a corollary to the fact that the number of times 0 appears as an eigenvalue in the Laplacian is the number of connected components in the graph. The magnitude of this value reflects how well connected the overall graph is. It has been used in analyzing the robustness and synchronizability of networks.

Properties

The truncated icosahedron or Buckminsterfullerene graph has a traditional connectivity of 3, and an algebraic connectivity of 0.243.

The algebraic connectivity of undirected graphs with nonnegative weights, with the inequality being strict if and only if G is connected. However, the algebraic connectivity can be negative for general directed graphs, even if G is a connected graph.[2] Furthermore, the value of the algebraic connectivity is bounded above by the traditional (vertex) connectivity of a graph, , unless the graph is complete (the algebraic connectivity of a complete graph Kn is its order n).[3] If the number of vertices of an undirected connected graph with nonnegative edge weights is n and the diameter is D, the algebraic connectivity is also known to be bounded below by ,[4] and in fact (in a result due to Brendan McKay) by .[5] For the graph with 6 nodes show above (n=6,D=3) these bound means, 4/18 = 0.222 ≤ algebraic connectivity 0.722  ≤ connectivity 1.

Unlike the traditional form of graph connectivity, defined by local configurations whose removal would disconnect the graph, the algebraic connectivity is dependent on the global number of vertices, as well as the way in which vertices are connected. In random graphs, the algebraic connectivity decreases with the number of vertices, and increases with the average degree.[6]

The exact definition of the algebraic connectivity depends on the type of Laplacian used. Fan Chung has developed an extensive theory using a rescaled version of the Laplacian, eliminating the dependence on the number of vertices, so that the bounds are somewhat different.[7]

In models of synchronization on networks, such as the Kuramoto model, the Laplacian matrix arises naturally, so the algebraic connectivity gives an indication of how easily the network will synchronize.[8] Other measures, such as the average distance (characteristic path length) can also be used,[9] and in fact the algebraic connectivity is closely related to the (reciprocal of the) average distance.[5]

The algebraic connectivity also relates to other connectivity attributes, such as the isoperimetric number, which is bounded below by half the algebraic connectivity.[10]

Fiedler vector

The original theory related to algebraic connectivity was produced by Miroslav Fiedler.[11][12] In his honor the eigenvector associated with the algebraic connectivity has been named the Fiedler vector. The Fiedler vector can be used to partition a graph.

Partitioning a graph using the Fiedler vector

Partitioning into two connected graphs.

For the example graph in the introductory section, the Fiedler vector is . The negative values are associated with the poorly connected vertex 6, and the neighbouring articulation point, vertex 4; while the positive values are associated with the other vertices. The signs of the values in the Fiedler vector can therefore be used to partition this graph into two components: . Alternatively, the value of 0.069 (which is close to zero) can be placed in a class of its own, partitioning the graph into three components: or moved to the other partition , as pictured. The squared values of the components of the Fiedler vector, summing up to one since the vector is normalized, can be interpreted as probabilities of the corresponding data points to be assigned to the sign-based partition.

See also

References

  1. ^ Weisstein, Eric W. "Algebraic Connectivity." From MathWorld--A Wolfram Web Resource.
  2. ^ Wu, Chai Wai (2005). "Algebraic connectivity of directed graphs". Linear and Multilinear Algebra. 53 (3). Taylor and Francis: 203–223. doi:10.1080/03081080500054810. S2CID 121368189. Even if G is quasi-strongly connected, which is equivalent to G containing a directed spanning tree, a(G) can still be nonpositive as the exploding star and Theorem 1 indicate.
  3. ^ Fiedler, Miroslav (1973). "Algebraic connectivity of graphs". Czechoslovak Mathematical Journal. 23 (2): 298–305. doi:10.21136/cmj.1973.101168. ISSN 0011-4642.
  4. ^ Gross, J.L.; Yellen, J., eds. (2004). Handbook of Graph Theory. CRC Press. p. 571. doi:10.1201/b16132. ISBN 0-203-49020-7.
  5. ^ a b Mohar, Bojan (1991). "The Laplacian Spectrum of Graphs" (PDF). In Alavi, Y.; Chartrand, G.; Oellermann, O.R.; Schwenk, A.J. (eds.). Graph Theory, Combinatorics, and Applications. Proceedings of the sixth quadrennial international conference on the theory and applications of graphs. Vol. 2. Wiley. pp. 871–898. Zbl 0840.05059.
  6. ^ Holroyd, Michael (2006). "Synchronization and Connectivity of Discrete Complex Systems". International Conference on Complex Systems.
  7. ^ Chung, F.R.K. (1997). Spectral Graph Theory. Regional Conference Series in Mathematics. Vol. 92. Amer. Math. Soc. ISBN 0-8218-8936-2. Incomplete revised edition
  8. ^ Pereira, Tiago (2011). "Stability of Synchronized Motion in Complex Networks". arXiv:1112.2297 [nlin.AO].
  9. ^ Watts, D. (2003). Six Degrees: The Science of a Connected Age. Vintage. ISBN 0-434-00908-3. OCLC 51622138.
  10. ^ Biggs, Norman (1993). Algebraic Graph Theory (2nd ed.). Cambridge University Press. pp. 28, 58. ISBN 0-521-45897-8.
  11. ^ Fiedler, M. (1973). "Algebraic connectivity of Graphs". Czechoslovak Mathematical Journal. 23 (98): 298–305. doi:10.21136/CMJ.1973.101168. MR 0318007. Zbl 0265.05119.
  12. ^ Fiedler, M. (1989) [1987]. "Laplacian of graphs and algebraic connectivity". Banach Center Publications. 25 (1): 57–70. doi:10.4064/-25-1-57-70.

Read other articles:

Rubén Arosemena Valdés Segundo Vicepresidente de Panamá 1 de septiembre de 2004-30 de junio de 2009Predecesor Dominador Baldomero BazánSucesor Juan Carlos Varela(como único Vicepresidente) Presidente de la Asamblea Nacional 1 de septiembre de 2001-31 de agosto de 2002Predecesor Laurentino CortizoSucesor Carlos Alvarado Acosta Información personalNacimiento 11 de abril de 1961 (62 años) Ciudad de Panamá, PanamáNacionalidad PanameñaReligión CatólicoInformación profesionalOcupaci

Echoes of the UniverseAlbum studio karya HomogenicDirilis1 Mei 2006Direkam2005-2006GenreElektronik, new wave, synthpopDurasi52:38LabelFFWD RecordsKronologi Homogenic Epic Symphony(2004)Epic Symphony2004 Echoes of the Universe(2006) Let a Thousand Flowers Bloom(2010)Let a Thousand Flowers Bloom2010 Singel dalam album Echoes of the Universe UtopiaDirilis: 2006 Walk In SilenceDirilis: 2006 Untukmu, DuniakuDirilis: 2006 Echoes of the Universe adalah album studio kedua oleh grup musik electrop...

Packaged foods company This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Pinnacle Foods – news · newspapers · books · scholar · JSTOR (February 2012) (Learn how and when to remove this template message) Pinnacle Foods, Inc.TypeSubsidiaryIndustryFoodFounded1998; 25 years ago (1998) (as Vlasic ...

Bedeutende Militäroperationen während des Zweiten Weltkriegs in Italien 1940–1945: Luftangriffe auf Italien 1940: Angriff auf Tarent 1943: Operation Husky (Lehrgang) – Waffenstillstand von Cassibile – Invasion in Italien (Baytown, Avalanche, Slapstick) – Fall Achse – Schlacht um Ortona 1944: Schlacht um Monte Cassino – Operation Shingle – Gotenstellung – Schlacht von Monte Castello 1945: Frühjahrsoffensive Landungen in Italien im September...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2022) بالنت نيلاسي معلومات شخصية الميلاد 20 مارس 1990 (العمر 33 سنة)بودابست  الطول 1.85 م (6 قدم 1 بوصة) مركز اللعب وسط الجنسية المجر  مسيرة الشباب سنوات فريق ...

Ressentiment (IPA: [ʁɛsɑ̃tiˈmɑ̃ː][1], anhörenⓘ/?) ist ein Lehnwort aus dem Französischen und bedeutet hier so viel wie „heimlicher Groll“ oder in der Übertragung von Theodor Lessing „Rückschlagsgefühl“.[2] Der Duden definiert das Ressentiment als eine „auf Vorurteilen, einem Gefühl der Unterlegenheit, Neid o. Ä. beruhende gefühlsmäßige, oft unbewusste Abneigung“.[3] Dem Ressentiment liegt regelmäßig das Gefühl dauernder Ohnmacht gegen

Vous lisez un « bon article » labellisé en 2014. Pour les articles homonymes, voir Firefly. Firefly Logo de la série Données clés Titre original Firefly Genre Science-fiction Création Joss Whedon Production Joss Whedon Tim Minear Acteurs principaux Nathan FillionGina TorresAlan TudykMorena BaccarinJewel StaiteAdam BaldwinRon GlassSean MaherSummer Glau Musique Greg Edmonson Pays d'origine États-Unis Chaîne d'origine Fox Nb. de saisons 1 Nb. d'épisodes 14 Durée 45 minutes D...

Museum in Las Palmas, Canary Islands Elder Museum of Science and TechnologyMuseo Elder de la Ciencia y la TecnologíaThe Elder MuseumLocation within Canary IslandsEstablished1879; 144 years ago (1879)LocationParque Santa CatalinaLas PalmasGran CanariaSpainCoordinates28°08′28″N 15°25′47″W / 28.14103°N 15.42976°W / 28.14103; -15.42976Websitewww.museoelder.org The Elder Museum of Science and Technology (Spanish: Museo Elder de la Ciencia y la...

Pemandangan Pesisir dengan Balaam dan Keledainya (lukisan tahun 1636 karya Bartholomeus Breenbergh) Balak (בָּלָק — Ibrani untuk Balak, sebuah nama, kata kedua dan kata distinsif pertama dalam parsyah tersebut) adalah Bacaan Taurat Mingguan (פָּרָשָׁה, parashah) ke-40 dalam siklus bacaan Taurat Yahudi tahunan dan ketujuh dalam Kitab Bilangan. Dalam parsyah tersebut, Balak putra Zippor, raja Moab, berniat untuk mengundang Balaam untuk mengutuk Israel,[1] keledai Balaam...

Antisemitismus, eine seit der Aufklärung entstandene Judenfeindlichkeit, verlor seit 1945 mit dem Ende des NS-Staates weithin seine Funktion als politische Ideologie, besteht aber in vielfältiger Form bei Bevölkerungsteilen jeder sozialen Schicht, religiösen und politischen Orientierung fort. Der Antisemitismus bis 1945 hatte zum Holocaust geführt. Danach traten politische Organisationen mit offen judenfeindlichen Zielen und traditionelle Stereotype des christlichen Antijudaismus zurück...

1997 novel by Richard Russo For the straight man half of a comedy duo, see Straight man. First edition Straight Man (New York: Random House, 1997) is a novel by Richard Russo set at the fictional West Central Pennsylvania University in Railton, Pennsylvania. A campus novel, the book was inspired by Russo's experiences teaching at Southern Illinois University Carbondale, Southern Connecticut State University, and Penn State Altoona.[1] Synopsis Straight Man chronicles the mid-life cris...

American politician Natalia Hussey-BurdickMember of the Hawaii House of Representativesfrom the 50th districtIncumbentAssumed office November 8, 2022Preceded byPatrick Branco Personal detailsBorn (1989-12-02) December 2, 1989 (age 34)Kailua, HawaiiPolitical partyDemocraticRelativesChris Burdick (uncle)[1]ResidenceKailua, HawaiiAlma materUniversity of HawaiʻiProfessionPolitician, activistWebsite Campaign website Natalia Hussey-Burdick is an American politician and...

Gwyneth Ho何桂藍Ho dalam pemilihan pendahuluan pro-demokrasi 2020 pro-democracy primariesInformasi pribadiLahir24 Agustus 1990 (umur 33)Partai politikIndependenTempat tinggalHong KongPekerjaanMantan wartawatiSunting kotak info • L • B Gwyneth Ho Kwai-lam Hanzi tradisional: 何桂藍 Hanzi sederhana: 何桂蓝 Alih aksara Mandarin - Hanyu Pinyin: Hé Guìlán Yue (Kantonis) - Jyutping: ho4 gwai3 laam4 Gwyneth Ho Kwai-lam (Hanzi tradisional: 何桂藍; lahir 24 Agustus 199...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Miss Brazil 2014 – news · newspapers · books · scholar · JSTOR (December 2013) (Learn how and when to remov...

American film director Albert BandBornAlfredo Antonini(1924-05-07)May 7, 1924Paris, FranceDiedJune 14, 2002(2002-06-14) (aged 78)Los Angeles, California, U.S.Other namesArtemio AntoniniOccupation(s)Film producer, film director, screenwriterYears active1951–96SpouseJacquelyn RichardsonChildrenCharles, Richard Albert Band (born Alfredo Antonini;[1] May 7, 1924, Paris, 14 arr. – June 14, 2002, Los Angeles) was an Italian-American film director and film producer. He was...

Restaurant in San Francisco, California, U.S. Noodle in a HaystackRestaurant informationFood typeJapaneseStreet address4601 Geary BoulevardCitySan FranciscoStateCaliforniaPostal/ZIP Code94118CountryUnited StatesCoordinates37°46′50.3″N 122°28′7.4″W / 37.780639°N 122.468722°W / 37.780639; -122.468722Websitenoodleinhaystack.com Noodle in a Haystack is a Japanese restaurant in San Francisco, California.[1][2][3][4][5] Est...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Pemakaman Peringatan Perserikatan Bangsa-Bangsa재한유엔기념공원Commission for the UNMCK (CUNMCK)Tembok PeringatanDipakai untuk orang-orang yang gugur pada 1950–53ditambah pasukan yang gugur pasca-perangDidirikan18 Januari 1951(sebagai Pemakam...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) المعهد التقاني الطبي (جامعة دمشق) أُحدث المعهد المتوسط الطبي بدمشق بموجب القرار الوزاري رقم (339/و) تاريخ 7/7...

Ministry of Foreign Affairs of AzerbaijanAzərbaycan Respublikasının Xarici İşlər NazirliyiCoat of arms of AzerbaijanAgency overviewFormedMay 28, 1918JurisdictionGovernment of AzerbaijanHeadquarters4 Shikhali Gurbanov St., Baku, Azerbaijan 1009Minister responsibleJeyhun BayramovDeputy Ministers responsibleAraz AzimovKhalaf KhalafovMahmud Mammad-GuliyevHafiz PashayevNadir HuseynovWebsitewww.mfa.gov.az Ministry of Foreign Affairs of Azerbaijan (Azerbaijani: Azərbaycan Respublikasının Xa...

Constituency of Bangladesh's Jatiya Sangsad Dhaka-15Constituencyfor the Jatiya SangsadDistrictDhaka DistrictDivisionDhaka DivisionElectorate340,480 (2018)[1]Current constituencyCreated2008Parliamentary PartyBangladesh Awami LeagueMember of ParliamentKamal Ahmed MajumderCity Council areaDhaka North City CorporationPrev. ConstituencyDhaka-14Next ConstituencyDhaka-16 Dhaka-15 is a constituency in the Jatiya Sangsad (National Parliament) of Bangladesh. It has been represented since 2008 b...