Albertson conjecture

Unsolved problem in mathematics:
Do complete graphs have the smallest possible crossing number among graphs with the same chromatic number?
The complete graph drawn with three crossings, the smallest crossing number of any graph requiring six colors

In combinatorial mathematics, the Albertson conjecture is an unproven relationship between the crossing number and the chromatic number of a graph. It is named after Michael O. Albertson, a professor at Smith College, who stated it as a conjecture in 2007;[1] it is one of his many conjectures in graph coloring theory.[2] The conjecture states that, among all graphs requiring colors, the complete graph is the one with the smallest crossing number. Equivalently, if a graph can be drawn with fewer crossings than , then, according to the conjecture, it may be colored with fewer than colors.

A conjectured formula for the minimum crossing number

It is straightforward to show that graphs with bounded crossing number have bounded chromatic number: one may assign distinct colors to the endpoints of all crossing edges and then 4-color the remaining planar graph. Albertson's conjecture replaces this qualitative relationship between crossing number and coloring by a more precise quantitative relationship. Specifically, a different conjecture of Richard K. Guy (1972) states that the crossing number of the complete graph is

It is known how to draw complete graphs with this many crossings, by placing the vertices in two concentric circles; what is unknown is whether there exists a better drawing with fewer crossings. Therefore, a strengthened formulation of the Albertson conjecture is that every -chromatic graph has crossing number at least as large as the right hand side of this formula.[3] This strengthened conjecture would be true if and only if both Guy's conjecture and the Albertson conjecture are true.

Asymptotic bounds

A weaker form of the conjecture, proven by M. Schaefer,[3] states that every graph with chromatic number has crossing number (using big omega notation), or equivalently that every graph with crossing number has chromatic number . Albertson, Cranston & Fox (2009) published a simple proof of these bounds, by combining the fact that every minimal -chromatic graph has minimum degree at least  (because otherwise greedy coloring would use fewer colors) together with the crossing number inequality according to which every graph with has crossing number . Using the same reasoning, they show that a counterexample to Albertson's conjecture for the chromatic number (if it exists) must have fewer than vertices.

Special cases

The Albertson conjecture is vacuously true for . In these cases, has crossing number zero, so the conjecture states only that the -chromatic graphs have crossing number greater than or equal to zero, something that is true of all graphs. The case of Albertson's conjecture is equivalent to the four color theorem, that any planar graph can be colored with four or fewer colors, for the only graphs requiring fewer crossings than the one crossing of are the planar graphs, and the conjecture implies that these should all be at most 4-chromatic. Through the efforts of several groups of authors the conjecture is now known to hold for all .[4] For every integer , Luiz and Richter presented a family of -color-critical graphs that do not contain a subdivision of the complete graph but have crossing number at least that of .[5]

There is also a connection to the Hadwiger conjecture, an important open problem in combinatorics concerning the relationship between chromatic number and the existence of large cliques as minors in a graph.[6] A variant of the Hadwiger conjecture, stated by György Hajós, is that every -chromatic graph contains a subdivision of ; if this were true, the Albertson conjecture would follow, because the crossing number of the whole graph is at least as large as the crossing number of any of its subdivisions. However, counterexamples to the Hajós conjecture are now known,[7] so this connection does not provide an avenue for proof of the Albertson conjecture.

Notes

  1. ^ According to Albertson, Cranston & Fox (2009), the conjecture was made by Albertson at a special session of the American Mathematical Society in Chicago, held in October 2007.
  2. ^ Hutchinson, Joan P. (June 19, 2009), In memory of Michael O. Albertson, 1946–2009: a collection of his outstanding conjectures and questions in graph theory (PDF), SIAM Activity group on Discrete Mathematics.
  3. ^ a b Albertson, Cranston & Fox (2009).
  4. ^ Oporowski & Zhao (2009); Albertson, Cranston & Fox (2009); Barát & Tóth (2010); Ackerman (2019).
  5. ^ Luiz & Richter (2014).
  6. ^ Barát & Tóth (2010).
  7. ^ Catlin (1979); Erdős & Fajtlowicz (1981).

References

Read other articles:

Fictional terrorist organization in the G.I. Joe franchise Cobra Command redirects here. For other uses, see Cobra Command (disambiguation). CobraLogo of COBRAPublication informationPublisherMarvel ComicsDevil's Due PublishingIDW PublishingFirst appearanceG.I. Joe: A Real American HeroCreated byLarry HamaIn-story informationType of organizationTerrorist military groupBase(s)See BasesLeader(s)Commander: Cobra CommanderEmperor: SerpentorAgent(s)Weapons supplier: DestroDirector of intelligence: ...

奧沙辛拿CA Osasuna全名Club Atlético Osasuna成立1920年10月24日,​103年前​(1920-10-24)[1][2]城市納瓦拉,潘普洛納主場El Sadar容納人數18,761主席Luis Sabalza總教練Jagoba Arrasate聯賽西班牙足球甲級聯賽2022–23西甲,第 7 位球衣供應Adidas球衣廣告Kosner網站官方網站 主場球衣 客场球衣 第三球衣 当前赛季 奧沙辛拿體育會(Club Atlético Osasuna),簡稱奥萨苏纳,是一家位於

مجموعة ألفاالشعارمعلومات عامةالتأسيس 1989النوع خاصةالشكل القانوني شركة مساهمة المقر الرئيسي موسكو ب روسياموقع الويب alfagroup.org المنظومة الاقتصاديةالشركات التابعة مجموعة ألفا المصرفيةمجموعة التجزئة X5تي إن كي-بي بيفيمبلكوممجموعة Rosvodokanalمجموعة A1مجموعة ليتر ونألفا كابيتال...

Broc à glaçure plombifère de type Toby Jug (en) (Grande-Bretagne, fin du XVIIIe siècle — Victoria and Albert Museum de Londres). Les céramiques à glaçure plombifère sont de la vaisselle de table dont la glaçure est à base de plomb, ce qui rend la pièce étanche. Apparue au Moyen-Orient au deuxième millénaire avant notre ère, elle a persisté presque jusqu'à nos jours ; mais la toxicité du plomb l'a fait interdire ou mettre sa fabrication sous contrôle dans pl...

Sese Otros nombres Bassese, Ssese,Idioma Idioma lugandaReligión Animismo, Cristianismo, IslamEtnias relacionadas Pueblo ganda, BantúAsentamientos importantes Uganda Uganda[editar datos en Wikidata] El pueblo sese, también llamado bassese o ssese, es un grupo étnico de origen bantú. Viven en el archipiélago del mismo nombre situado en el noroeste del lago Victoria, Uganda.[1]​[2]​ Fueron integrados a la cultura del pueblo ganda y su reino Buganda. Forman parte ...

Lesotho Kapitän letzte Teilnahme 2001 Aktuelles ITF-Ranking letzte Teilnahme 2001 Statistik Erste Teilnahme 2000 Davis-Cup-Teilnahmen 2 davon in Weltgruppe 0 Bestes Ergebnis 7. in Europa/Afrika Zone Gruppe IV (2000) Ewige Bilanz 2:7 Erfolgreichste Spieler Meiste Siege gesamt Mabusetsa Siimane (4) Meiste Einzelsiege Relebohile Motsepa (2) Meiste Doppelsiege Sekhoke Moshoeshoe, Mabusetsa Siimane (je 3) Bestes Doppel Sekhoke Moshoeshoe / Mabusetsa Siimane (3) Meiste Teilnahmen Ntsane Moeletsi (...

Dorf TschergaЧерга Föderationskreis Sibirien Republik Altai Rajon Schebalino Bevölkerung 1826 Einwohner(Stand: 14. Okt. 2010)[1] Höhe des Zentrums 480 m Zeitzone UTC+7 Telefonvorwahl (+7) 38849 Postleitzahl 649219 Kfz-Kennzeichen 04 OKATO 84 250 890 001 Geographische Lage Koordinaten 51° 34′ N, 85° 34′ O51.56666666666785.566666666667480Koordinaten: 51° 34′ 0″ N, 85° 34′ 0″ O Tscherga (Russlan...

The Annie Larsen affair was a gun-running plot in the United States during World War I.[1] The plot, involving India's Ghadar Party, the Irish Republican Brotherhood and the German Foreign office, was a part of the larger so-called Hindu–German Conspiracy,[2] and it was the prime offence cited in the 1917 Hindu–German Conspiracy Trial, described at the time as the longest and most expensive trial in American legal history.[3] Background Main article: Hindu–German...

Motor vehicle assembly plant in England Vauxhall Ellesmere PortBuilt1962LocationEllesmere Port, Cheshire, EnglandCoordinates53°18′11.9″N 2°55′55.3″W / 53.303306°N 2.932028°W / 53.303306; -2.932028IndustryMotor vehicle manufactureProductsVauxhall Viva (1962–1974)Opel/Vauxhall Chevette (1975–1980)Opel/Vauxhall Astra (1981–2022)Employees1,100Area1,209,366 m2 (13,017,510 sq ft)Volume187,000 vehiclesAddressNorth Rd, Ellesmere Port CH65 1ALOw...

Michael Jackson at the White House in Washington, D.C., with US President Ronald Reagan and first lady Nancy Reagan, May 1984 Jackson and U.S. President George H. W. Bush at the White House on April 5, 1990, where he was honored as the Artist of the Decade following his increased success with Bad American singer-songwriter Michael Jackson (1958–2009) is regarded as one of the most significant cultural figures of the 20th century and one of the most successful and influential entertainers of...

La Cámara de Planetas Gemini o generador de imágenes de planetas Gemini es un instrumento de imagen de alto contraste que se está construyendo para el telescopio Gemini Sur en Chile. El instrumento permitirá alcanzar un alto contraste en pequeñas separaciones angulares, lo que permitirá la obtención de imágenes directas y espectroscopia de campo integral de los planetas extrasolares alrededor de estrellas cercanas.[1]​ La colaboración en la planificación y la construcción de ...

Cricket ground in Gloucestershire, England College GroundCollege Ground, CheltenhamGround informationLocationCheltenham, GloucestershireInternational informationOnly WODI15 August 2005: England v  AustraliaAs of 6 September 2020Source: CricketArchive The College Ground is a cricket ground in the grounds of Cheltenham College in Cheltenham, Gloucestershire, England. Gloucestershire County Cricket Club have played more than 300 first-class and more than 70 List A matches there. It als...

2000 video game 2000 video gameThief II: The Metal AgeNorth American cover artDeveloper(s)Looking Glass StudiosPublisher(s)Eidos InteractiveDirector(s)Steve PearsallDesigner(s)Tim StellmachRandy SmithProgrammer(s)Alex DuranWilliam FarquharPat McElhattonArtist(s)Mark LizotteComposer(s)Eric BrosiusSeriesThiefEngineDark EnginePlatform(s)Microsoft WindowsReleaseNA: March 23, 2000EU: March 31, 2000Genre(s)StealthMode(s)Single-player Thief II: The Metal Age is a 2000 stealth video game developed by...

Merah Manggis Belahan manggisCommon connotationsKulit dalam manggis     Koordinat warnaTriplet hex#800000sRGBB    (r, g, b)(128, 0, 0)HSV       (h, s, v)(0°, 100%, 50%)SumberDaftar Istilah Warna[1]X11[2]B: Dinormalkan ke [0–255] (bita) Merah manggis merupakan salah satu corak warna merah tua. Warna ini juga dikenal dengan sebutan merah marun, merah pulasan, dan merun. Warna ini menyerupai warna kulit dalam manggis yang berwarna ke...

2002 European Athletics Indoor ChampionshipsTrack events60 mmenwomen200 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomen3000 mmenwomen60 m hurdlesmenwomen4×400 m relaymenwomenField eventsHigh jumpmenwomenPole vaultmenwomenLong jumpmenwomenTriple jumpmenwomenShot putmenwomenCombined eventsPentathlonwomenHeptathlonmenvte The women's 60 metres hurdles event at the 2002 European Athletics Indoor Championships was held on March 2. Medalists Gold Silver Bronze Linda Ferga France Kirsten ...

Untuk tempat lain yang bernama sama, lihat Dukun (disambiguasi). Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Dukun, Magelang – berita · surat kabar · buku · cendekiawan · JSTOR DukunKecamatanNegara IndonesiaProvinsiJawa TengahKabupatenMagelan...

Art historian Angela Rosenthal The cover of Rosenthal's first book: Angelika Kauffmann: Bildnismalerei im 18. Jahrhundert, 1996. The cover of Rosenthal's masterwork, Angelica Kauffman: Art and sensibility, 2006. Angela H. Rosenthal (12 September 1963–11 November 2010) was an art historian at Dartmouth College and an expert on the art of Angelica Kauffman. Her masterwork was Angelica Kauffman: Art and sensibility, published by Yale University Press in 2006 which won the Historians of Bri...

2003 novel by Natsuo Kirino For the 1989 novel by Patrick McGrath, see The Grotesque (novel). Grotesque First editionAuthorNatsuo KirinoOriginal titleグロテスクTranslatorRebecca CopelandCountryJapanLanguageJapanese published in English on February 1, 2007GenreCrime novelPublisherBungeishunjū (Japan)Harvill Secker (US)Publication date2003Media typePrint (Hardcover, Paperback) & Audio CDPages467pp (hardback)ISBN1-84343-270-6OCLC123293449 Grotesque is a 2003 crime novel by Ja...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Shanghai Zoo – news · newspapers · books · scholar · JSTOR (September 2014) (Learn how and when to remove this template message) You can help expand this article with text translated from the corresponding article in Chinese. (April 2022) Click [show] for ...

Il gestore della chiave nel DES (<<< indica una rotazione a sinistra) In crittografia il gestore della chiave (key schedule in inglese) indica una particolare funzione dei cifrari a blocchi che serve a generare, partendo dalla chiave segreta, delle sotto-chiavi utilizzate da altre funzioni dell'algoritmo crittografico. Indice 1 Alcuni tipi di gestori delle chiavi 2 Note 3 Voci correlate 4 Riferimenti Alcuni tipi di gestori delle chiavi Alcuni cifrari hanno dei gestori delle chiavi mo...