72 equal temperament

In music, 72 equal temperament, called twelfth-tone, 72 TET, 72 EDO, or 72 ET, is the tempered scale derived by dividing the octave into twelfth-tones, or in other words 72 equal steps (equal frequency ratios). Play Each step represents a frequency ratio of 722, or ⁠16 + 2 / 3 cents, which divides the 100 cent 12 EDO "halftone" into 6 equal parts (100 cents ÷ ⁠16 + 2 / 3 = 6 steps, exactly) and is thus a "twelfth-tone" (Play). Since 72 is divisible by 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, and 72, 72 EDO includes all those equal temperaments. Since it contains so many temperaments, 72 EDO contains at the same time tempered semitones, third-tones, quartertones and sixth-tones, which makes it a very versatile temperament.

This division of the octave has attracted much attention from tuning theorists, since on the one hand it subdivides the standard 12 equal temperament and on the other hand it accurately represents overtones up to the twelfth partial tone, and hence can be used for 11 limit music. It was theoreticized in the form of twelfth-tones by Alois Hába[1] and Ivan Wyschnegradsky,[2][3][4] who considered it as a good approach to the continuum of sound. 72 EDO is also cited among the divisions of the tone by Julián Carrillo, who preferred the sixteenth-tone (96 EDO) as an approximation to continuous sound in discontinuous scales.

History and use

Byzantine music

The 72 equal temperament is used in Byzantine music theory,[5] dividing the octave into 72 equal moria, which itself derives from interpretations of the theories of Aristoxenos, who used something similar. Although the 72 equal temperament is based on irrational intervals (see above), as is the 12 tone equal temperament (12 EDO) mostly commonly used in Western music (and which is contained as a subset within 72 equal temperament), 72 equal temperament, as a much finer division of the octave, is an excellent tuning for both representing the division of the octave according to the ancient Greek diatonic and the chromatic genera in which intervals are based on ratios between notes, and for representing with great accuracy many rational intervals as well as irrational intervals.

Other history and use

A number of composers have made use of it, and these represent widely different points of view and types of musical practice. These include Alois Hába, Julián Carrillo, Ivan Wyschnegradsky, and Iannis Xenakis.[citation needed]

Many other composers use it freely and intuitively, such as jazz musician Joe Maneri, and classically oriented composers such as Julia Werntz and others associated with the Boston Microtonal Society. Others, such as New York composer Joseph Pehrson are interested in it because it supports the use of miracle temperament, and still others simply because it approximates higher-limit just intonation, such as Ezra Sims and James Tenney. There was also an active Soviet school of 72 EDO composers, with less familiar names: Evgeny Alexandrovich Murzin, Andrei Volkonsky, Nikolai Nikolsky, Eduard Artemiev, Alexander Nemtin, Andrei Eshpai, Gennady Gladkov, Pyotr Meshchianinov, and Stanislav Kreichi.[citation needed]

The ANS synthesizer uses 72 equal temperament.

Notation

The Maneri-Sims notation system designed for 72 EDO uses the accidentals and for 1/ 12  tone down and up (1 step = ⁠16 + 2 / 3 cents), and for  1 / 6 down and up (2 steps = ⁠33 + 1 / 3 cents), and and for septimal  1 / 4 up and down (3 steps = 50 cents = half a 12 EDO sharp).

They may be combined with the traditional sharp and flat symbols (6 steps = 100 cents) by being placed before them, for example: or , but without the intervening space. A  1 / 3 tone may be one of the following , , , or (4 steps = ⁠66 + 2 / 3 ) while 5 steps may be , , or (⁠83 + 1 / 3 cents).

Interval size

Just intervals approximated in 72 EDO. Note that any pitch must be within 8.3 cents of its nearest 72 EDO note.

Below are the sizes of some intervals (common and esoteric) in this tuning. For reference, differences of less than 5 cents are melodically imperceptible to most people, and approaching the limits of feasible tuning accuracy for acoustic instruments. Note that it is not possible for any pitch to be further than ⁠8 + 1 / 3 cents from its nearest 72 EDO note, since the step size between them is ⁠16 + 2 / 3 cents. Hence for the sake of comparison, pitch errors of about 8 cents are (for this fine a tuning) poorly matched, whereas the practical limit for tuning any acoustical instrument is at best about 2 cents, which would be very good match in the table – this even applies to electronic instruments if they produce notes that show any audible trace of vibrato.[citation needed]

Interval name Size
(steps)
Size
(cents)
MIDI audio Just
ratio
Just
(cents)
MIDI audio Error
octave 72 1200 2:1 1200 0
harmonic seventh 58 966.67 7:4 968.83 −2.16
perfect fifth 42 700 play 3:2 701.96 play −1.96
septendecimal tritone 36 600 play 17:12 603.00 −3.00
septimal tritone 35 583.33 play 7:5 582.51 play +0.82
tridecimal tritone 34 566.67 play 18:13 563.38 +3.28
11th harmonic 33 550 play 11:8 551.32 play −1.32
(15:11) augmented fourth 32 533.33 play 15:11 536.95 play −3.62
perfect fourth 30 500 play 4:3 498.04 play +1.96
septimal narrow fourth 28 466.66 play 21:16 470.78 play −4.11
17:13 narrow fourth 17:13 464.43 +2.24
tridecimal major third 27 450 play 13:10 454.21 play −4.21
septendecimal supermajor third 22:17 446.36 +3.64
septimal major third 26 433.33 play 9:7 435.08 play −1.75
undecimal major third 25 416.67 play 14:11 417.51 play −0.84
quasi-tempered major third 24 400 play 5:4 386.31 play 13.69
major third 23 383.33 play 5:4 386.31 play −2.98
tridecimal neutral third 22 366.67 play 16:13 359.47 +7.19
neutral third 21 350 play 11:9 347.41 play +2.59
septendecimal supraminor third 20 333.33 play 17:14 336.13 −2.80
minor third 19 316.67 play 6:5 315.64 play +1.03
quasi-tempered minor third 18 300 play 25:21 301.85 −1.85
tridecimal minor third 17 283.33 play 13:11 289.21 play −5.88
septimal minor third 16 266.67 play 7:6 266.87 play −0.20
tridecimal  5 / 4 tone 15 250 play 15:13 247.74 +2.26
septimal whole tone 14 233.33 play 8:7 231.17 play +2.16
septendecimal whole tone 13 216.67 play 17:15 216.69 −0.02
whole tone, major tone 12 200 play 9:8 203.91 play −3.91
whole tone, minor tone 11 183.33 play 10:9 182.40 play +0.93
greater undecimal neutral second 10 166.67 play 11:10 165.00 play +1.66
lesser undecimal neutral second 9 150 play 12:11 150.64 play −0.64
greater tridecimal  2 / 3 tone 8 133.33 play 13:12 138.57 play −5.24
great limma 27:25 133.24 play +0.09
lesser tridecimal 2/3 tone 14:13 128.30 play +5.04
septimal diatonic semitone 7 116.67 play 15:14 119.44 play −2.78
diatonic semitone 16:15 111.73 play +4.94
greater septendecimal semitone 6 100 play 17:16 104.95 play −4.95
lesser septendecimal semitone 18:17 98.95 play +1.05
septimal chromatic semitone 5 83.33 play 21:20 84.47 play −1.13
chromatic semitone 4 66.67 play 25:24 70.67 play −4.01
septimal third-tone 28:27 62.96 play +3.71
septimal quarter tone 3 50 play 36:35 48.77 play +1.23
septimal diesis 2 33.33 play 49:48 35.70 play −2.36
undecimal comma 1 16.67 play 100:99 17.40 −0.73

Although 12 EDO can be viewed as a subset of 72 EDO, the closest matches to most commonly used intervals under 72 EDO are distinct from the closest matches under 12 EDO. For example, the major third of 12 EDO, which is sharp, exists as the 24 step interval within 72 EDO, but the 23 step interval is a much closer match to the 5:4 ratio of the just major third.

12 EDO has a very good approximation for the perfect fifth (third harmonic), especially for such a small number of steps per octave, but compared to the equally-tempered versions in 12 EDO, the just major third (fifth harmonic) is off by about a sixth of a step, the seventh harmonic is off by about a third of a step, and the eleventh harmonic is off by about half of a step. This suggests that if each step of 12 EDO were divided in six, the fifth, seventh, and eleventh harmonics would now be well-approximated, while 12 EDO‑s excellent approximation of the third harmonic would be retained. Indeed, all intervals involving harmonics up through the 11th are matched very closely in 72 EDO; no intervals formed as the difference of any two of these intervals are tempered out by this tuning system. Thus, 72 EDO can be seen as offering an almost perfect approximation to 7-, 9-, and 11 limit music. When it comes to the higher harmonics, a number of intervals are still matched quite well, but some are tempered out. For instance, the comma 169:168 is tempered out, but other intervals involving the 13th harmonic are distinguished.

Unlike tunings such as 31 EDO and 41 EDO, 72 EDO contains many intervals which do not closely match any small-number (< 16) harmonics in the harmonic series.

Scale diagram

12 tone Play and 72 tone Play regular diatonic scales notated with the Maneri-Sims system

Because 72 EDO contains 12 EDO, the scale of 12 EDO is in 72 EDO. However, the true scale can be approximated better by other intervals.

See also

References

  1. ^ Hába, A. (1978) [1927]. Harmonické základy ctvrttónové soustavy [German translation Neue Harmonielehre des diatonischen, chromatischen Viertel-, Drittel-, Sechstel- und Zwölftel-tonsystems   English translation Harmonic Fundamentals of the Quarter-Tone System] (in Czech and German). Translated by Kistner, Fr. Leipzig (1927) / Wien, 1978: C.F.W. Siegel (1927) / Universal (1978).{{cite book}}: CS1 maint: location (link)
    Revised German edition:
    Hába, A. (2001) [1927, 1978]. Steinhard, Erich (ed.). Grundfragen der mikrotonalen Musik [Foundations of Microtonal Music] (in German). Vol. 3. Kistner, Fr. (original translation) (rev. ed.). München, DE: Musikedition Nymphenburg Filmkunst-Musikverlag.
  2. ^ Wyschnegradsky, I. (1972). "L'ultrachromatisme et les espaces non octaviants". La Revue Musicale (290–291): 71–141.
  3. ^ Jedrzejewski, Franck, ed. (1996) [1953]. La Loi de la Pansonorité [The Laws of Multitonal Music] (manuscript) (in French). Criton, Pascale (preface). Geneva, CH: Ed. Contrechamps. ISBN 978-2-940068-09-8.
  4. ^ Jedrzejewski, Franck, ed. (2005) [1936]. Une philosophie dialectique de l'art musical [A Dialectical Philosophy of Musical Art] (manuscript) (in French). Paris, FR: Ed. L'Harmattan. ISBN 978-2-7475-8578-1.
  5. ^ Chryssochoidis, G.; Delviniotis, D.; Kouroupetroglou, G. (11–13 July 2007). "A semi-automated tagging methodology for Orthodox ecclesiastic chant acoustic corpora" (PDF). Proceedings SMC'07. 4th Sound and Music Computing Conference. Lefkada, Greece. Archived (PDF) from the original on 15 August 2007. Retrieved 24 April 2008.

Read other articles:

John SmithKapten John Smith (1624)LahirLincolnshire, InggrisDibaptis6 Januari 1580Meninggal21 Juni 1631 (umur 51)London, InggrisMakamSt Sepulchre-without-Newgate, LondonDikenal atasMembantu untuk mendirikan dan memerintah koloni JamestownTanda tangan John Smith (c. Januari 1580 – 21 Juni 1631) adalah seorang tentara, pengelana, dan pengarang Inggris. Ia dikenang akan perannya dalam mendirikan pemukiman Inggris pertama di Jamestown, Virginia. Buku-buku dan peta-petanya menyemangati orang-or...

 

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Bukit Watu Amben – berita · surat kabar · buku · cendekiawan · JSTOR Bukit Watu Amben merupakan destinasi wisata perbukitan yang terletak di perbatasan Kabupaten Bantul dan Kabupaten Gunungkidul. Lokasi ...

 

 

Part of a series onBritish law Acts of Parliament of the United Kingdom Year      1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 ...

Part of a series onBritish law Acts of Parliament of the United Kingdom Year      1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 ...

 

 

Nick Holonyak Jr.BiographieNaissance 3 novembre 1928ZeiglerDécès 20 septembre 2022 (à 93 ans)UrbanaNationalité américaineDomicile États-UnisFormation Université de l'Illinois à Urbana-ChampaignActivités Physicien, ingénieur, ingénieur électricien, inventeur, professeur d'université, scientifiqueAutres informationsA travaillé pour Université de l'Illinois à Urbana-ChampaignGeneral ElectricLaboratoires BellMembre de Académie américaine des sciencesAcadémie nationale d'in...

 

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Mary Alice Brandon File – news · newspapers · books · scholar · JSTOR (May 2020) (Learn how and when to remove this message) 2015 American filmThe Mary Alice Brandon FileDirected byKailey Spear & Sam SpearScreenplay byKailey Spear & Sam SpearBased o...

Marvel Comics supervillain This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the arti...

 

 

Japanese manga and anime series Sword GaiCover of the first manga volumeソードガイ(Sōdo Gai)GenreDark fantasy[1] MangaWritten byToshiki InoueIllustrated byKeita Amemiya (characters)Wosamu Kine (scenario)Published byHero's Inc.MagazineMonthly Hero'sDemographicSeinenOriginal run2012 – 2015Volumes6 MangaSword Gai EvolveWritten byToshiki InoueIllustrated byKeita Amemiya (characters)Wosamu Kine (scenario)Published byHero's Inc.MagazineMonthly Hero'sDem...

 

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

Ranks in the Chinese People's Liberation Army Air Force The ranks in the Chinese People's Liberation Army Air Force are similar to those of the Chinese Army, formally known as the People's Liberation Army Ground Force, except that those of the PLA Air Force are prefixed by 空军 (Kong Jun) meaning Air Force. See Ranks of the People's Liberation Army or the article on an individual rank for details on the evolution of rank and insignia in the PLAAF. This article primarily covers the existing ...

 

 

Памятники истории и культуры местного значения города Алма-Аты — отдельные постройки, здания и сооружения с исторически сложившимися территориями указанных построек, зданий и сооружений, мемориальные дома, кварталы, некрополи, мавзолеи и отдельные захоронения, прои...

 

 

Magdalena MaleevaMagdalena Maleeva all'Open di Francia 2005Nazionalità Bulgaria Altezza168 cm Peso59 kg Tennis Termine carrieraottobre 2005 Carriera Singolare1 Vittorie/sconfitte 439–290 Titoli vinti 10 WTA, 1 ITF Miglior ranking 4º (29 gennaio 1996) Risultati nei tornei del Grande Slam  Australian Open 4T (1991, 1993, 1994, 2002)  Roland Garros 4T (1993, 1996, 2003, 2004)  Wimbledon 4T (2001, 2002, 2004, 2005)  US Open QF (1992) Doppio1 Vittorie/sconfitte 121–1...

الحزب الشيوعي الكوبي البلد كوبا  تاريخ التأسيس 3 أكتوبر 1965  المؤسسون فيدل كاسترو  الحزب الاشتراكي الشعبي،  وحركة 26 يوليو،  ودليل الطالب الثوري  [لغات أخرى]‏    قائد الحزب ميغيل دياز كانيل (19 أبريل 2021–)  الأمين العام ميغيل دياز كانيل  عدد الأعضا�...

 

 

Ini adalah nama Korea; marganya adalah Han. Han Hyun-minLahir19 Mei 2001 (umur 23)Seoul, Korea SelatanPekerjaanModelTahun aktif2016–sekarangAgenSF Models X EntertainmentNama KoreaHangul한현민 Hanja韓炫旻 Alih AksaraHan HyeonminMcCune–ReischauerHan Hyǒnmin Han Hyun-min (Hangul: 한현민; lahir 19 Mei 2001) adalah seorang model pria asal Korea Selatan yang merupakan model Korea pertama keturunan Afrika yang menjadi model catwalk di Korea Selatan. Kehidupan awal I...

 

 

Public university in Valenzuela, Philippines This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Pamantasan ng Lungsod ng Valenzuela – news · newspapers · books · scholar · JSTOR (January 2019) (Learn how and when to remove this message) Pamantasan ng Lungsod ng ValenzuelaUniversity of the City of ValenzuelaOffi...

2012 Indian presidential election ← 2007 19 July 2012 (2012-07-19) 2017 →   Nominee Pranab Mukherjee P. A. Sangma Party INC NPP Alliance UPA NDA Home state West Bengal Meghalaya Electoral vote 713,763 315,987 States carried 20+NCT+PY 8 Percentage 69.3% 30.7% Swing 3.5% 3.5% President before election Pratibha Patil INC President after election Pranab Mukherjee INC The 14th indirect presidential election, in order to elect the 13th Presi...

 

 

56°36′32″N 2°56′20″W / 56.609°N 2.939°W / 56.609; -2.939 Kinnettles Parish Kirk Kinnettles House Kinnettles is a civil parish in Angus, a council area in the northeast of Scotland. The Parish is bounded on the north and east by Forfar, on the southeast and south by Inverarity and the southwest and northwest by Glamis. The centre of the Parish is dominated by the oblong Brigton Hill (164m) whose steepest slopes descend to the Kerbet Water. The Kerbet valley...

 

 

For other uses, see Powder room (disambiguation). This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (April 2013) (Learn how and when to remove this message) 2013 British filmPowder RoomDVD coverDirected byMJ DelaneyScreenplay byRachel HironsStory byJennifer DaviesAmirah GarbaRachel HironsStephanie JayStef O'DriscollAmy RevelleNatasha SparkesEmily WallisBased onW...

Chinese legislative session (1964–1975) 3rd National People's Congress第三届全国人民代表大会← 2nd4th →National Emblem of the People's Republic of China21 December 1964 – 26 February 1978(13 years, 67 days)OverviewTypeHighest organ of state powerElectionNational electionsLeadershipChairmanZhu DeVice ChairmenPeng Zhen, Liu Bocheng, Li Jingquan, Kang Sheng, Guo Moruo, He Xiangning, Huang Yanpei, Chen Shutong, Li Xuefeng, Xu Xiangqian, Yang Ming...

 

 

Connection point in electronic circuits For other uses, see Terminal (disambiguation). Pole (electrical circuits) redirects here. For the poles of switches, see Switch § Contact terminology. Terminal symbol A terminal strip, to which wires can be soldered A terminal is the point at which a conductor from a component, device or network comes to an end.[1] Terminal may also refer to an electrical connector at this endpoint, acting as the reusable interface to a conductor and creat...