3 21 polytope


321

231

132

Rectified 321

birectified 321

Rectified 231

Rectified 132
Orthogonal projections in E7 Coxeter plane

In 7-dimensional geometry, the 321 polytope is a uniform 7-polytope, constructed within the symmetry of the E7 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 7-ic semi-regular figure.[1]

Its Coxeter symbol is 321, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of one of the 3-node sequences.

The rectified 321 is constructed by points at the mid-edges of the 321. The birectified 321 is constructed by points at the triangle face centers of the 321. The trirectified 321 is constructed by points at the tetrahedral centers of the 321, and is the same as the rectified 132.

These polytopes are part of a family of 127 (27-1) convex uniform polytopes in 7-dimensions, made of uniform 6-polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: .

321 polytope

321 polytope
Type Uniform 7-polytope
Family k21 polytope
Schläfli symbol {3,3,3,32,1}
Coxeter symbol 321
Coxeter diagram
6-faces 702 total:
126 311
576 {35}
5-faces 6048:
4032 {34}
2016 {34}
4-faces 12096 {33}
Cells 10080 {3,3}
Faces 4032 {3}
Edges 756
Vertices 56
Vertex figure 221 polytope
Petrie polygon octadecagon
Coxeter group E7, [33,2,1], order 2903040
Properties convex

In 7-dimensional geometry, the 321 polytope is a uniform polytope. It has 56 vertices, and 702 facets: 126 311 and 576 6-simplexes.

For visualization this 7-dimensional polytope is often displayed in a special skewed orthographic projection direction that fits its 56 vertices within an 18-gonal regular polygon (called a Petrie polygon). Its 756 edges are drawn between 3 rings of 18 vertices, and 2 vertices in the center. Specific higher elements (faces, cells, etc.) can also be extracted and drawn on this projection.

The 1-skeleton of the 321 polytope is the Gosset graph.

This polytope, along with the 7-simplex, can tessellate 7-dimensional space, represented by 331 and Coxeter-Dynkin diagram: .

Alternate names

  • It is also called the Hess polytope for Edmund Hess who first discovered it.
  • It was enumerated by Thorold Gosset in his 1900 paper. He called it an 7-ic semi-regular figure.[1]
  • E. L. Elte named it V56 (for its 56 vertices) in his 1912 listing of semiregular polytopes.[2]
  • H.S.M. Coxeter called it 321 due to its bifurcating Coxeter-Dynkin diagram, having 3 branches of length 3, 2, and 1, and having a single ring on the final node of the 3 branch.
  • Hecatonicosihexa-pentacosiheptacontihexa-exon (Acronym Naq) - 126-576 facetted polyexon (Jonathan Bowers)[3]

Coordinates

The 56 vertices can be most simply represented in 8-dimensional space, obtained by the 28 permutations of the coordinates and their opposite:

± (-3, -3, 1, 1, 1, 1, 1, 1)

Construction

Its construction is based on the E7 group. Coxeter named it as 321 by its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 3-node sequence.

The facet information can be extracted from its Coxeter-Dynkin diagram, .

Removing the node on the short branch leaves the 6-simplex, .

Removing the node on the end of the 2-length branch leaves the 6-orthoplex in its alternated form: 311, .

Every simplex facet touches a 6-orthoplex facet, while alternate facets of the orthoplex touch either a simplex or another orthoplex.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes 221 polytope, .

Seen in a configuration matrix, the element counts can be derived by mirror removal and ratios of Coxeter group orders.[4]

E7 k-face fk f0 f1 f2 f3 f4 f5 f6 k-figures notes
E6 ( ) f0 56 27 216 720 1080 432 216 72 27 221 E7/E6 = 72x8!/72x6! = 56
D5A1 { } f1 2 756 16 80 160 80 40 16 10 5-demicube E7/D5A1 = 72x8!/16/5!/2 = 756
A4A2 {3} f2 3 3 4032 10 30 20 10 5 5 rectified 5-cell E7/A4A2 = 72x8!/5!/2 = 4032
A3A2A1 {3,3} f3 4 6 4 10080 6 6 3 2 3 triangular prism E7/A3A2A1 = 72x8!/4!/3!/2 = 10080
A4A1 {3,3,3} f4 5 10 10 5 12096 2 1 1 2 isosceles triangle E7/A4A1 = 72x8!/5!/2 = 12096
A5A1 {3,3,3,3} f5 6 15 20 15 6 4032 * 1 1 { } E7/A5A1 = 72x8!/6!/2 = 4032
A5 6 15 20 15 6 * 2016 0 2 E7/A5 = 72x8!/6! = 2016
A6 {3,3,3,3,3} f6 7 21 35 35 21 10 0 576 * ( ) E7/A6 = 72x8!/7! = 576
D6 {3,3,3,3,4} 12 60 160 240 192 32 32 * 126 E7/D6 = 72x8!/32/6! = 126

Images

Coxeter plane projections
E7 E6 / F4 B7 / A6

[18]

[12]

[7x2]
A5 D7 / B6 D6 / B5

[6]

[12/2]

[10]
D5 / B4 / A4 D4 / B3 / A2 / G2 D3 / B2 / A3

[8]

[6]

[4]

The 321 is fifth in a dimensional series of semiregular polytopes. Each progressive uniform polytope is constructed vertex figure of the previous polytope. Thorold Gosset identified this series in 1900 as containing all regular polytope facets, containing all simplexes and orthoplexes.

k21 figures in n dimensions
Space Finite Euclidean Hyperbolic
En 3 4 5 6 7 8 9 10
Coxeter
group
E3=A2A1 E4=A4 E5=D5 E6 E7 E8 E9 = = E8+ E10 = = E8++
Coxeter
diagram
Symmetry [3−1,2,1] [30,2,1] [31,2,1] [32,2,1] [33,2,1] [34,2,1] [35,2,1] [36,2,1]
Order 12 120 1,920 51,840 2,903,040 696,729,600
Graph - -
Name −121 021 121 221 321 421 521 621

It is in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 3k1 series. (A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral hosohedron.)

3k1 dimensional figures
Space Finite Euclidean Hyperbolic
n 4 5 6 7 8 9
Coxeter
group
A3A1 A5 D6 E7 =E7+ =E7++
Coxeter
diagram
Symmetry [3−1,3,1] [30,3,1] [[31,3,1]]
= [4,3,3,3,3]
[32,3,1] [33,3,1] [34,3,1]
Order 48 720 46,080 2,903,040
Graph - -
Name 31,-1 310 311 321 331 341

Rectified 321 polytope

Rectified 321 polytope
Type Uniform 7-polytope
Schläfli symbol t1{3,3,3,32,1}
Coxeter symbol t1(321)
Coxeter diagram
6-faces 758
5-faces 44352
4-faces 70560
Cells 48384
Faces 11592
Edges 12096
Vertices 756
Vertex figure 5-demicube prism
Petrie polygon octadecagon
Coxeter group E7, [33,2,1], order 2903040
Properties convex

Alternate names

  • Rectified hecatonicosihexa-pentacosiheptacontihexa-exon as a rectified 126-576 facetted polyexon (acronym ranq) (Jonathan Bowers)[5]

Construction

Its construction is based on the E7 group. Coxeter named it as 321 by its bifurcating Coxeter-Dynkin diagram, with a single node on the end of the 3-node sequence.

The facet information can be extracted from its Coxeter-Dynkin diagram, .

Removing the node on the short branch leaves the 6-simplex, .

Removing the node on the end of the 2-length branch leaves the rectified 6-orthoplex in its alternated form: t1311, .

Removing the node on the end of the 3-length branch leaves the 221, .

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes 5-demicube prism, .

Images

Coxeter plane projections
E7 E6 / F4 B7 / A6

[18]

[12]

[7x2]
A5 D7 / B6 D6 / B5

[6]

[12/2]

[10]
D5 / B4 / A4 D4 / B3 / A2 / G2 D3 / B2 / A3

[8]

[6]

[4]

Birectified 321 polytope

Birectified 321 polytope
Type Uniform 7-polytope
Schläfli symbol t2{3,3,3,32,1}
Coxeter symbol t2(321)
Coxeter diagram
6-faces 758
5-faces 12348
4-faces 68040
Cells 161280
Faces 161280
Edges 60480
Vertices 4032
Vertex figure 5-cell-triangle duoprism
Petrie polygon octadecagon
Coxeter group E7, [33,2,1], order 2903040
Properties convex

Alternate names

  • Birectified hecatonicosihexa-pentacosiheptacontihexa-exon as a birectified 126-576 facetted polyexon (acronym branq) (Jonathan Bowers)[6]

Construction

Its construction is based on the E7 group. Coxeter named it as 321 by its bifurcating Coxeter-Dynkin diagram, with a single node on the end of the 3-node sequence.

The facet information can be extracted from its Coxeter-Dynkin diagram, .

Removing the node on the short branch leaves the birectified 6-simplex, .

Removing the node on the end of the 2-length branch leaves the birectified 6-orthoplex in its alternated form: t2(311), .

Removing the node on the end of the 3-length branch leaves the rectified 221 polytope in its alternated form: t1(221), .

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes rectified 5-cell-triangle duoprism, .

Images

Coxeter plane projections
E7 E6 / F4 B7 / A6

[18]

[12]

[7x2]
A5 D7 / B6 D6 / B5

[6]

[12/2]

[10]
D5 / B4 / A4 D4 / B3 / A2 / G2 D3 / B2 / A3

[8]

[6]

[4]

See also

Notes

  1. ^ a b Gosset, 1900
  2. ^ Elte, 1912
  3. ^ Klitzing, (o3o3o3o *c3o3o3x - naq)
  4. ^ Coxeter, Regular Polytopes, 11.8 Gossett figures in six, seven, and eight dimensions, p. 202-203
  5. ^ Klitzing. (o3o3o3o *c3o3x3o - ranq)
  6. ^ Klitzing, (o3o3o3o *c3x3o3o - branq)

References

  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • Elte, E. L. (1912), The Semiregular Polytopes of the Hyperspaces, Groningen: University of Groningen
  • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45] See p342 (figure 3.7c) by Peter mcMullen: (18-gonal node-edge graph of 321)
  • Klitzing, Richard. "7D uniform polytopes (polyexa)". o3o3o3o *c3o3o3x - naq, o3o3o3o *c3o3x3o - ranq, o3o3o3o *c3x3o3o - branq
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds

Read other articles:

AheGambar atol Ahe yang diambil NASAAheGeografiLokasiSamudra PasifikKoordinat14°29′S 146°19′W / 14.483°S 146.317°W / -14.483; -146.317Koordinat: 14°29′S 146°19′W / 14.483°S 146.317°W / -14.483; -146.317KepulauanTuamotuLuas138 km2  (lagoon)12 km2 (5 sq mi)Panjang23.5 kmLebar12.2 kmTitik tertinggi(tak bernama) (10 m)PemerintahanNegara PrancisWilayah seberang laut Polinesi...

 

Es CampurSemangkuk es campur dengan irisan nangka, cendol, dan mutiara tapioka dalam santan dan gula.SajianDessertTempat asalIndonesiaDaerahSecara nasional di Indonesia, juga populer di Asia TenggaraSuhu penyajianDinginBahan utamaEs serut, kelapa, berbagai buah, cincau, sirup, susu kental manisSunting kotak info • L • BBantuan penggunaan templat ini  Media: Es Campur Es campur adalah salah satu minuman khas Indonesia, dibuat dengan mencampurkan berbagai jenis bahan dala...

 

Ancient Egyptian goddess of childbirth Part of a series onAncient Egyptian religion Beliefs Afterlife Cosmology Duat Ma'at Mythology Numerology Philosophy Soul Practices Funerals Offerings: Offering formula Temples Priestess of Hathor Pyramids Deities (list)Ogdoad Amun Amunet Hauhet Heh Kauket Kek Naunet Nu Ennead Atum Geb Isis Nephthys Nut Osiris Set Shu Tefnut A Aati Aker Akhty Amenhotep, son of Hapu Amesemi Ammit Am-heh Amu-Aa Anat Andjety Anhur Anput Anubis Anuket Apedemak Apep Apis Apt A...

Rob Blake is the current general manager of the Los Angeles Kings. The Los Angeles Kings are an American professional ice hockey team based in Los Angeles, California. They play in the Pacific Division of the Western Conference in the National Hockey League (NHL).[1] The team joined the NHL in 1967 as an expansion team with five other teams, and won their first Stanley Cup in 2012. Having first played at The Forum, the Kings have played their home games at the Staples Center since 19...

 

Halaman ini berisi artikel tentang kota. Untuk kabupaten bernama sama, lihat Kabupaten Bogor. Kota BogorKotaTranskripsi bahasa daerah • Aksara Sundaᮘᮧᮌᮧᮁ • Bahasa BelandaBuitenzorgDari atas : Istana Bogor, kiri ke kanan : Kota Bogor dan Gunung Salak, Kebun Raya Bogor BenderaLambangJulukan: Kota HujanMotto: Di nu kiwari ngancik nu bihari, seja ayeuna sampeureun jaga(Sunda) Segala hal di masa kini adalah pusaka masa silam, dan ikhtiar h...

 

Kesunanan Surakarta Hadiningratꦑꦱꦸꦤꦤꦤ꧀ꦯꦸꦫꦏꦂꦠꦲꦢꦶꦤꦶꦁ​ꦫꦠ꧀Kasunanan Surakarta Hadiningrat1745–Sekarang Bendera Lambang(Sri Radya Laksana) Lagu kerajaan: Ladrang Sri Katon[1] Wilayah Kesunanan Surakarta sejak tahun 1830 (warna merah tua); termasuk berbagai daerah enklavenya serta wilayah Kadipaten Mangkunegaran (warna merah muda), yang merupakan wilayah vasal dari Kesunanan Surakarta.[2][3]Ibu kotaSurakartaBahasa resmiJaw...

Европейская сардина Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёры...

 

«Promuovere, proteggere e garantire il pieno ed uguale godimento di tutti i diritti umani e di tutte le libertà fondamentali da parte delle persone con disabilità, e promuovere il rispetto per la loro intrinseca dignità. […]» (Art. 1 Convenzione delle Nazioni Unite sui diritti delle persone con disabilità dell'ONU, 13 dicembre 2006, CBM Swiss[1]) Uno sciatore con protesi Lo sci alpino paralimpico è la variante dello sci alpino praticata da atleti con disabilità fisiche o vi...

 

American diplomat (born 1967) Alexander LaskarisUnited States Ambassador to Chad IncumbentAssumed office August 18, 2022PresidentJoe BidenPreceded byGeeta PasiUnited States Ambassador to Guinea In officeAugust 3, 2012 – November 10, 2015PresidentBarack ObamaPreceded byPatricia MollerSucceeded byDennis B. Hankins Personal detailsBornAlexander Mark Laskaris1967 (age 56–57)Monterey, California, U.S.EducationGeorgetown University (BA)United States Army War College (MSS) ...

Branch of geometry Contact form redirects here. For web email forms, see Form (web) § Form-to-email scripts. The standard contact structure on R3. Each point in R3 has a plane associated to it by the contact structure, in this case as the kernel of the one-form dz − y dx. These planes appear to twist along the y-axis. It is not integrable, as can be verified by drawing an infinitesimal square in the x-y plane, and follow the path along the one-forms. The path would not return to the s...

 

1921 film by Rowland V. Lee Broken HeartsFilm posterDirected byRowland V. LeeWritten byEmilie Johnson (story)Joseph F. Poland (writer)Produced byHobart BosworthStarringHobart BosworthMadge BellamyRaymond McKeeCinematographyJ.O. TaylorDistributed byAssociated ProducersRelease date October 3, 1921 (1921-10-03) (U.S.) Running time6 reelsCountryUnited StatesLanguageSilent (English intertitles) Blind Hearts is a 1921 American silent drama film produced by Hobart Bosworth who sta...

 

2022 studio album by BlueHeart & SoulStudio album by BlueReleased28 October 2022 (2022-10-28)Length30:26LabelTag8BMGProducer Ben Collier Steve DuBerry Hugh Goldsmith Lewis Shay Jankel Ronny Svendsen Paul Visser Blue chronology Colours(2015) Heart & Soul(2022) Singles from Heart & Soul Haven't Found You YetReleased: 25 May 2022[1] Dance with MeReleased: 29 June 2022[1] MagneticReleased: 16 September 2022[2] Heart & SoulReleased: 4...

Sudah Pasti TahanSutradaraArizalProduserRaam SorayaPemeranWarkop DKI (Dono, Kasino, Indro)Sally MarcellinaNurul ArifinFortunellaAngel IbrahimPak TileLydia FebrianiTaufik SavalasPujiono Surya TrionoDistributorSoraya Intercine FilmsTanggal rilis19 Desember 1991Durasi... menitNegaraIndonesia Sudah Pasti Tahan adalah film drama komedi Indonesia yang dirilis dan diproduksi pada tanggal 19 Desember 1991 dengan disutradarai oleh Arizal dan dibintangi antara lain oleh Warkop DKI, Sally Marcellina, da...

 

منتخب قيرغيزستان لهوكي الجليد للناشئين البلد قرغيزستان  ألوان الفريق     رمز IIHF KGZ مشاركة دولية  قيرغيزستان 12 – 4 الفلبين  (كوالالمبور، ماليزيا؛ 13 ديسمبر 2017) أكبر فوز  قيرغيزستان 13 – 2 الهند  (كوالالمبور، ماليزيا؛ 17 ديسمبر 2017)  قيرغيزستان 13 – 2 الفلبين  ...

 

Road in South Australia This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Strathalbyn Road – news · newspapers · books · scholar · JSTOR (June 2022) (Learn how and when to remove this message) Strathalbyn RoadSouth AustraliaNorthwest endSoutheast endCoordinates 35°00′55″S 138°44′11″E / ࿯...

Pemukim Jepang di Kepulauan MarshallPresiden Amata KabuaPresiden Kessai NoteJumlah populasi70 (2007)[1][fn 1]Daerah dengan populasi signifikanJaluit, KwajaleinBahasaMarshall, Inggris, JepangAgamaProtestan;[2] Shinto dan BuddhaKelompok etnik terkaitMicronesians, Jepang, Okinawa Pemukiman Jepang di Kepulauan Marshall timbul dari perdagangan Jepang di wilayah Pasifik. Para penjelajah Jepang pertama datang ke Kepulauan Marshall pada akhir abad ke-19, meskipun pemukiman per...

 

Peta menunjukan lokasi Mercedes Mercedes adalah munisipalitas yang terletak di provinsi Camarines Norte, Filipina. Pada tahun 2015, munisipalitas ini memiliki populasi sebesar 50.841 jiwa atau. Pembagian wilayah Secara politis Mercedes terbagi menjadi 26 barangay, yaitu: Apuao Canimog Caringo Catandunganon Cayucyucan Colasi Del Rosario (Tagongtong) Gaboc Hamoraon Hinipaan Lalawigan Lanot Mambungalon Manguisoc Masalongsalong Matoogtoog Pambuhan Quinapaguian San Roque Tarum Sarana pendidikan Be...

 

新潟みなとトンネル 西詰・入船町側後方の建物は入船みなとタワー概要現況 供用中所属路線名 新潟港臨港道路入舟臨港線起点 新潟県新潟市中央区海辺町二番町終点 新潟県新潟市東区臨港町二丁目運用開通 2002年(平成14年)5月19日(暫定2車線)2005年(平成17年)7月24日(全面供用)管理 新潟県 新潟地域振興局新潟港湾事務所通行対象 自動車・自転車・歩行者通行料�...

加賀丸いも(かがまるいも)は、石川県能美市と小松市特産の伝統野菜。ヤマノイモ科ヤマノイモ属ナガイモ(Dioscorea polystachya)の中でも、ツクネイモ群と呼ばれる品種群の一種。 概要 加賀丸いも 能美市と小松市の一部という限られた地域で栽培される貴重な作物で、できのよいものはソフトボールのような大きさで丸い形が特徴である[1]。すりおろすと強い粘...

 

КоммунаЭскондоEscondeaux Герб 43°20′27″ с. ш. 0°07′50″ в. д.HGЯO Страна  Франция Регион Юг — Пиренеи Департамент Верхние Пиренеи Кантон Рабастенс-де-Бигор Мэр Рене Рок(2014—2020) История и география Площадь 3,79 км² Высота центра 224–245 м Часовой пояс UTC+1:00, летом UTC+2:00 Населен...