Ω-automaton

In automata theory, a branch of theoretical computer science, an ω-automaton (or stream automaton) is a variation of a finite automaton that runs on infinite, rather than finite, strings as input. Since ω-automata do not stop, they have a variety of acceptance conditions rather than simply a set of accepting states.

ω-automata are useful for specifying behavior of systems that are not expected to terminate, such as hardware, operating systems and control systems. For such systems, one may want to specify a property such as "for every request, an acknowledge eventually follows", or its negation "there is a request that is not followed by an acknowledge". The former is a property of infinite words: one cannot say of a finite sequence that it satisfies this property.

Classes of ω-automata include the Büchi automata, Rabin automata, Streett automata, parity automata and Muller automata, each deterministic or non-deterministic. These classes of ω-automata differ only in terms of acceptance condition. They all recognize precisely the regular ω-languages except for the deterministic Büchi automata, which is strictly weaker than all the others. Although all these types of automata recognize the same set of ω-languages, they nonetheless differ in succinctness of representation for a given ω-language.

Deterministic ω-automata

Formally, a deterministic ω-automaton is a tuple A = (Q,Σ,δ,Q0,Acc) that consists of the following components:

  • Q is a finite set. The elements of Q are called the states of A.
  • Σ is a finite set called the alphabet of A.
  • δ: Q × Σ → Q is a function, called the transition function of A.
  • Q0 is an element of Q, called the initial state.
  • Acc is the acceptance condition, formally a subset of Qω.

An input for A is an infinite string over the alphabet Σ, i.e. it is an infinite sequence α = (a1,a2,a3,...). The run of A on such an input is an infinite sequence ρ = (r0,r1,r2,...) of states, defined as follows:

  • r0 = q0.
  • r1 = δ(r0,a1).
  • r2 = δ(r1,a2).
...
  • that is, for every i: ri = δ(ri-1,ai).

The main purpose of an ω-automaton is to define a subset of the set of all inputs: The set of accepted inputs. Whereas in the case of an ordinary finite automaton every run ends with a state rn and the input is accepted if and only if rn is an accepting state, the definition of the set of accepted inputs is more complicated for ω-automata. Here we must look at the entire run ρ. The input is accepted if the corresponding run is in Acc. The set of accepted input ω-words is called the recognized ω-language by the automaton, which is denoted as L(A).

The definition of Acc as a subset of Qω is purely formal and not suitable for practice because normally such sets are infinite. The difference between various types of ω-automata (Büchi, Rabin etc.) consists in how they encode certain subsets Acc of Qω as finite sets, and therefore in which such subsets they can encode.

Nondeterministic ω-automata

Formally, a nondeterministic ω-automaton is a tuple A = (Q,Σ,Δ,Q0,Acc) that consists of the following components:

  • Q is a finite set. The elements of Q are called the states of A.
  • Σ is a finite set called the alphabet of A.
  • Δ is a subset of Q × Σ × Q and is called the transition relation of A.
  • Q0 is a subset of Q, called the initial set of states.
  • Acc is the acceptance condition, a subset of Qω.

Unlike a deterministic ω-automaton, which has a transition function δ, the non-deterministic version has a transition relation Δ. Note that Δ can be regarded as a function : Q × Σ → P(Q) from Q × Σ to the power set P(Q). Thus, given a state qn and a symbol an, the next state qn+1 is not necessarily determined uniquely, rather there is a set of possible next states.

A run of A on the input α = (a1,a2,a3,...) is any infinite sequence ρ = (r0,r1,r2,...) of states that satisfies the following conditions:

  • r0 is an element of Q0.
  • r1 is an element of Δ(r0,a1).
  • r2 is an element of Δ(r1,a2).
...
  • that is, for every i: ri is an element of Δ(ri-1,ai).

A nondeterministic ω-automaton may admit many different runs on any given input, or none at all. The input is accepted if at least one of the possible runs is accepting. Whether a run is accepting depends only on Acc, as for deterministic ω-automata. Every deterministic ω-automaton can be regarded as a nondeterministic ω-automaton by taking Δ to be the graph of δ. The definitions of runs and acceptance for deterministic ω-automata are then special cases of the nondeterministic cases.

Acceptance conditions

Acceptance conditions may be infinite sets of ω-words. However, people mostly study acceptance conditions that are finitely representable. The following lists a variety of popular acceptance conditions.

Before discussing the list, let's make the following observation. In the case of infinitely running systems, one is often interested in whether certain behavior is repeated infinitely often. For example, if a network card receives infinitely many ping requests, then it may fail to respond to some of the requests but should respond to an infinite subset of received ping requests. This motivates the following definition: For any run ρ, let Inf(ρ) be the set of states that occur infinitely often in ρ. This notion of certain states being visited infinitely often will be helpful in defining the following acceptance conditions.

  • A Büchi automaton is an ω-automaton A that uses the following acceptance condition, for some subset F of Q:
Büchi condition
A accepts exactly those runs ρ for which Inf(ρ) ∩ F is not empty, i.e. there is an accepting state that occurs infinitely often in ρ.
  • A Rabin automaton is an ω-automaton A that uses the following acceptance condition, for some set Ω of pairs (Bi,Gi) of sets of states:
Rabin condition
A accepts exactly those runs ρ for which there exists a pair (Bi,Gi) in Ω such that Bi ∩ Inf(ρ) is empty and Gi ∩ Inf(ρ) is not empty.
  • A Streett automaton is an ω-automaton A that uses the following acceptance condition, for some set Ω of pairs (Bi,Gi) of sets of states:
Streett condition
A accepts exactly those runs ρ such that for all pairs (Bi,Gi) in Ω, Bi ∩ Inf(ρ) is empty or Gi ∩ Inf(ρ) is not empty.
  • A parity automaton is an automaton A whose set of states is Q = {0,1,2,...,k} for some natural number k, and that has the following acceptance condition:
Parity condition
A accepts ρ if and only if the smallest number in Inf(ρ) is even.
  • A Muller automaton is an ω-automaton A that uses the following acceptance condition, for a subset F of P(Q) (the power set of Q):
Muller condition
A accepts exactly those runs ρ for which Inf(ρ) is an element of F.

Every Büchi automaton can be regarded as a Muller automaton. It suffices to replace F by F' consisting of all subsets of Q that contain at least one element of F. Similarly every Rabin, Streett or parity automaton can also be regarded as a Muller automaton.

Example

A non-deterministic Büchi automaton that recognizes (0∪1)*0ω

The following ω-language L over the alphabet Σ = {0,1}, which can be recognized by a nondeterministic Büchi automaton: L consists of all ω-words in Σω in which 1 occurs only finitely many times. A non-deterministic Büchi automaton recognizing L needs only two states q0 (the initial state) and q1. Δ consists of the triples (q0,0,q0), (q0,1,q0), (q0,0,q1) and (q1,0,q1). F = {q1}. For any input α in which 1 occurs only finitely many times, there is a run that stays in state q0 as long as there are 1s to read, and goes to state q1 afterwards. This run is successful. If there are infinitely many 1s, then there is only one possible run: the one that always stays in state q0. (Once the machine has left q0 and reached q1, it cannot return. If another 1 is read, there is no successor state.)

Notice that above language cannot be recognized by a deterministic Büchi automaton, which is strictly less expressive than its non-deterministic counterpart.

Expressive power of ω-automata

An ω-language over a finite alphabet Σ is a set of ω-words over Σ, i.e. it is a subset of Σω. An ω-language over Σ is said to be recognized by an ω-automaton A (with the same alphabet) if it is the set of all ω-words accepted by A. The expressive power of a class of ω-automata is measured by the class of all ω-languages that can be recognized by some automaton in the class.

The nondeterministic Büchi, parity, Rabin, Streett, and Muller automata, respectively, all recognize exactly the same class of ω-languages.[1] These are known as the ω-Kleene closure of the regular languages or as the regular ω-languages. Using different proofs it can also be shown that the deterministic parity, Rabin, Streett, and Muller automata all recognize the regular ω-languages. It follows from this that the class of regular ω-languages is closed under complementation. However, the example above shows that the class of deterministic Büchi automata is strictly weaker.

Conversion between ω-automata

Because nondeterministic Muller, Rabin, Streett, parity, and Büchi automata are equally expressive, they can be translated to each other. Let us use the following abbreviation : for example, NB stands for nondeterministic Büchi ω-automaton, while DP stands for deterministic parity ω-automaton. Then the following holds.

  • Clearly, any deterministic automaton can be viewed as a nondeterministic one.
  • with no blow-up in the state space.
  • with a polynomial blow-up in the state space, i.e., the number of states in the resulting NB is , where is the number of states in the NB and is the number of Rabin acceptance pairs (see, for example, [2]).
  • with exponential blow-up in the state space.
  • with exponential blow-up in the state space. This determinization result uses Safra's construction.

A comprehensive overview of translations can be found on the referenced web source. [3]

Applications to decidability

ω-automata can be used to prove decidability of S1S, the monadic second-order (MSO) theory of natural numbers under successor. Infinite-tree automata extend ω-automata to infinite trees and can be used to prove decidability of S2S, the MSO theory with two successors, and this can be extended to the MSO theory of graphs with bounded (given a fixed bound) treewidth.

Further reading

  • Farwer, Berndt (2002), "ω-Automata", in Grädel, Erich; Thomas, Wolfgang; Wilke, Thomas (eds.), Automata, Logics, and Infinite Games, Lecture Notes in Computer Science, Springer, pp. 3–21, ISBN 978-3-540-00388-5.
  • Perrin, Dominique; Pin, Jean-Éric (2004), Infinite Words: Automata, Semigroups, Logic and Games, Elsevier, ISBN 978-0-12-532111-2
  • Thomas, Wolfgang (1990), "Automata on infinite objects", in van Leeuwen, Jan (ed.), Handbook of Theoretical Computer Science, vol. B, MIT Press, pp. 133–191, ISBN 978-0-262-22039-2
  • Bakhadyr Khoussainov; Anil Nerode (6 December 2012). Automata Theory and its Applications. Springer Science & Business Media. ISBN 978-1-4612-0171-7.


References

  1. ^ Safra, S. (1988), "On the complexity of ω-automata", Proceedings of the 29th Annual Symposium on Foundations of Computer Science (FOCS '88), Washington, DC, USA: IEEE Computer Society, pp. 319–327, doi:10.1109/SFCS.1988.21948.
  2. ^ Esparza, Javier (2017), Automata Theory: An Algorithmic Approach (PDF)
  3. ^ Boker, Udi (18 April 2018). "Word-Automata Translations". Udi Boker's webpage. Retrieved 30 March 2019.

Read other articles:

Содержание 1 Административно-территориальное устройство 1.1 Районы и города областного значения 2 Муниципальное устройство 2.1 Муниципальные районы, городской и муниципальные округа 3 Поселения 3.1 Батецкий район 3.2 Боровичский район 3.3 Валдайский район 3.4 Волотовский райо�...

Ця стаття не містить посилань на джерела. Ви можете допомогти поліпшити цю статтю, додавши посилання на надійні (авторитетні) джерела. Матеріал без джерел може бути піддано сумніву та вилучено. (липень 2023) Запорізьке кладовище Запорізьке кладовищеІнформація про цвинта...

المقبرة رقم 3 : مقبرة باشدو تقع جبانة طيبة على الضفة الغربية لنهر النيل، قبالة مدينة الأقصر في مصر. وغير المقابر الملكية الأكثر شهرة الواقعة في وادي الملوك والملكات، هناك العديد من المقابر الأخرى، يشار لها عادةً بتسمية مقابر النبلاء، وهي أماكن دفن بعض رجال الحاشية ذوي الن

El trato abusivo canadiense a detenidos afganos se refiere al conocimiento del Gobierno de Canadá o de las Fuerzas Armadas Canadienses sobre el trato abusivo a los detenidos en Afganistán. El abuso ocurrió después de que los afganos fueran detenidos por las fuerzas canadienses y posteriormente transferidos al Ejército Nacional Afgano o la Dirección Nacional de Seguridad de Afganistán durante la Guerra de Afganistán entre los años 2001 y 2021. La cuestión ha suscitado un acalorado de...

Resistance movements opposed to the German occupation of Belgium during World War II Members of the Belgian resistance with a Canadian soldier in Bruges, September 1944[a] The Belgian Resistance (French: Résistance belge, Dutch: Belgisch verzet) collectively refers to the resistance movements opposed to the German occupation of Belgium during World War II. Within Belgium, resistance was fragmented between many separate organizations, divided by region and political stances. The resis...

Series of sound changes affecting some West Germanic languages The High German languages are subdivided into Upper German (green) and Central German (cyan), and are distinguished from Low German (yellow) and the Low Franconian languages. The main isoglosses – the Benrath and Speyer lines – are marked in green. This map shows the modern boundaries of the languages after 1945. This article contains phonetic transcriptions in the International Phonetic Alphabet (IPA). For an introductory...

Pour les articles homonymes, voir Drusilla. DrusillaTitre de noblessePrincesseBiographieNaissance 38Décès InconnueÉpoque Haut Empire romainPère Agrippa IerMère Cypros (en)Fratrie Agrippa IIBéréniceMariamneConjoints Aziz d'ÉmèseAntonius FelixEnfant Marcus Antonius Agrippa (d)Gens Juliimodifier - modifier le code - modifier Wikidata Vestiges du palais hérodien à Césarée. Drusilla (38 – x) est la fille de Hérode Agrippa Ier et la sœur de Bérénice, Mariamne et H�...

1982 British horror film by Roger Christian The SenderTheatrical film posterDirected byRoger ChristianWritten byThomas BaumProduced byEdward S. FeldmanStarring Kathryn Harrold Željko Ivanek Shirley Knight Paul Freeman CinematographyRoger PrattEdited byAlan StrachanMusic byTrevor JonesProductioncompaniesKingsmere Productions Ltd.Paramount PicturesDistributed byParamount PicturesRelease date22 October 1982 (US)Running time91 minutesCountryUnited KingdomLanguageEnglishBudget$8 million[1]...

Cross-platform runtime system for building rich web applications This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Adobe AIR – news · newspapers · books · scholar · JSTOR (March 2011) (Learn how and when to remove this template message) Adobe AIROriginal author(s)Adobe Inc.Developer(s)Adobe Inc.HarmanInitial releaseFebruary 25, 2008; 15 years...

Jawa Tengah IXDaerah Pemilihan / Daerah pemilihanuntuk Dewan Perwakilan RakyatRepublik IndonesiaWilayah Daftar Kabupaten : Brebes Tegal Kota : Tegal ProvinsiJawa TengahDaerah pemilihan saat iniDibentuk2004Kursi8Anggota  Andi Najmi Fuaidi (PKB)  Nur Nadlifah (PKB)  Mohamad Hekal (Gerindra)  Paramitha Widya Kusuma (PDI-P)  Harris Turino (PDI-P)  Dewi Aryani Hilman (PDI-P)  Agung Widyantoro (Golkar)  Abdul Fikri Faqih (PKS)Dibentuk dariJawa Tenga...

1981 studio album by Orchestral Manoeuvres in the DarkArchitecture & MoralityStudio album by Orchestral Manoeuvres in the DarkReleased6 November 1981 (1981-11-06)Recorded1980–1981Studio The Gramophone Suite (Liverpool)[1] The Manor (Shipton-on-Cherwell)[1] Mayfair (London)[2] GenreSynth-pop[3]Length37:13LabelDindiscProducer Richard Manwaring OMD Mike Howlett Orchestral Manoeuvres in the Dark chronology Organisation(1980) Architectur...

Stasiun Takako高子駅Stasiun Takako pada Juli 2003LokasiMukaidai Hobaramachi Kamihobara, Date-shi, Fukushima-ken 960-0684JepangKoordinat37°48′30.38″N 140°31′38.27″E / 37.8084389°N 140.5272972°E / 37.8084389; 140.5272972Koordinat: 37°48′30.38″N 140°31′38.27″E / 37.8084389°N 140.5272972°E / 37.8084389; 140.5272972PengelolaAbukumaExpressJalur■ Jalur Abukuma ExpressLetak dari pangkal10.1 km dari FukushimaJumlah peron2 per...

Largest verified impact structure on Earth, about 2 billion years old Vredefort impact structureVredefort DomeVredefort Dome (centre), with the Vaal river running across it; seen from space with the Operational Land Imager on Landsat 8, 27 June 2018Impact crater/structureConfidenceConfirmedDiameter170–300 km (110–190 mi) (estimated former crater diameter)Age2,023 ± 4 Ma Orosirian, PaleoproterozoicExposedYesDrilledYesLocationCoordinates27°0′0″S 27°30′0″E / ...

5th Marine Expeditionary BrigadeActive1918 – 19191990 – ?15 October 2015 – PresentCountry United States of AmericaBranch United States Marine CorpsTypeMAGTFMotto(s)Right Force - Right NowEngagementsOperation Desert StormCommandersCurrentcommanderBrigadier General Matthew S. ReidNotablecommandersWilliam T. FairbournJames D. BeansMatthew G. TrollingerFarrell J. Sullivan [1]Military unit The 5th Marine Expeditionary Brigade is a United States Marine Corps unit. When ...

The Masked BrideKartu lobiSutradaraChristy CabanneJosef von Sternberg (tak disebutkan)Produser Metro Goldwyn Mayer Ditulis olehCarey Wilson (skenario)CeritaLeon AbramsPemeranMae MurrayFrancis X. BushmanBasil RathboneSinematograferOliver MarshDistributorMetro-Goldwyn-MayerTanggal rilis 13 Desember 1925 (1925-12-13) Durasi60 menitNegara Amerika Serikat BahasaFilm bisu dengan antar judul Inggris The Masked Bride adalah sebuah film drama romansa bisu Amerika Serikat tahun 1925 garapan Christ...

Eladio Jiménez. Eladio Jiménez Sánchez es un ciclista español nacido en la ciudad salmantina de Ciudad Rodrigo el 10 de marzo de 1976. Biografía Debut y progresión en Banesto Debutó como profesional en el año 1998 con el equipo español Banesto, dirigido por José Miguel Echávarri y Eusebio Unzué. En 2000 ganó una etapa en la Vuelta a España, estrenando así su palmarés. Éxitos en el Comunitat Valenciana Para 2004 fichó por el Comunitat Valenciana (continuador del Kelme)dirigid...

Ley de Educación Nacional Tipo LeyPromulgación 2006[editar datos en Wikidata] La Ley de Educación Nacional N° 26206 (LEN) es la legislación argentina que regula el derecho de enseñar y aprender en todo el territorio nacional.[1]​ Reemplazó a la Ley Federal de Educación N.º 24.195 que estaba en vigencia desde 1993. Historia El 14 de diciembre de 2006 se sancionó la Ley de Educación Nacional que fue promulgada 13 días después.[2]​[3]​ Esta ley reforma la...

2010 film You can help expand this article with text translated from the corresponding article in Norwegian. (May 2012) Click [show] for important translation instructions. View a machine-translated version of the Norwegian article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the En...

Burkard von Müllenheim-Rechberg Baron Burkard Freiherr von Müllenheim (1934)Información personalNacimiento 25 de julio de 1910Spandau, Alemania.Fallecimiento 1 de junio de 2003Ammerse, AlemaniaNacionalidad AlemanaFamiliaPadres Walter-Sigelin, Freiherr von Müllenheim-Rechberg Maria von den Brincken Información profesionalOcupación Teniente Capitán de navíoAgregado naval en LondresDiplomáticoabogado.Años activo 1929-1945Cargos ocupados Ambassador of Germany to Jamaica (1962-1965)...

Please join Talk:Economics#Updating definition of Economics for a discussion on the definition of economics. A cheeseburger for you! I have written a response for you at the economic's talk page. I hope we can get to an agreement. I would like to keep both definitions. See you there. Firulaith (talk) 20:08, 17 August 2014 (UTC)[reply] AN/I Bastun Yes, Minimax Regret, I've been pushing the POV that terrorist attacks by a proscribed terrorist organisation designated as such should be properly i...