7

← 6 7 8 →
−1 0 1 2 3 4 5 6 7 8 9
Cardinalseven
Ordinal7th
(seventh)
Numeral systemseptenary
Factorizationprime
Prime4th
Divisors1, 7
Greek numeralΖ´
Roman numeralVII, vii
Greek prefixhepta-/hept-
Latin prefixseptua-
Binary1112
Ternary213
Senary116
Octal78
Duodecimal712
Hexadecimal716
Greek numeralZ, ζ
Amharic
Arabic, Kurdish, Persian٧
Sindhi, Urdu۷
Bengali
Chinese numeral七, 柒
Devanāgarī
Telugu
Tamil
Hebrewז
Khmer
Thai
Kannada
Malayalam
ArmenianԷ
Babylonian numeral𒐛
Egyptian hieroglyph𓐀
Morse code_ _...

7 (seven) is the natural number following 6 and preceding 8. It is the only prime number preceding a cube.

As an early prime number in the series of positive integers, the number seven has greatly symbolic associations in religion, mythology, superstition and philosophy. The seven classical planets resulted in seven being the number of days in a week.[1] 7 is often considered lucky in Western culture and is often seen as highly symbolic.

Evolution of the Arabic digit

For early Brahmi numerals, 7 was written more or less in one stroke as a curve that looks like an uppercase ⟨J⟩ vertically inverted (ᒉ). The western Arab peoples' main contribution was to make the longer line diagonal rather than straight, though they showed some tendencies to making the digit more rectilinear. The eastern Arab peoples developed the digit from a form that looked something like 6 to one that looked like an uppercase V. Both modern Arab forms influenced the European form, a two-stroke form consisting of a horizontal upper stroke joined at its right to a stroke going down to the bottom left corner, a line that is slightly curved in some font variants. As is the case with the European digit, the Cham and Khmer digit for 7 also evolved to look like their digit 1, though in a different way, so they were also concerned with making their 7 more different. For the Khmer this often involved adding a horizontal line to the top of the digit.[2] This is analogous to the horizontal stroke through the middle that is sometimes used in handwriting in the Western world but which is almost never used in computer fonts. This horizontal stroke is, however, important to distinguish the glyph for seven from the glyph for one in writing that uses a long upstroke in the glyph for 1. In some Greek dialects of the early 12th century the longer line diagonal was drawn in a rather semicircular transverse line.

On seven-segment displays, 7 is the digit with the most common graphic variation (1, 6 and 9 also have variant glyphs). Most devices use three line segments, but devices made by some Japanese companies such as Sharp and Casio, as well as in the Koreas and Taiwan, 7 is written with four line segments because in those countries, 7 is written with a "hook" on the left, as ① in the following illustration. Further segments can give further variation. For example, Schindler elevators in the United States and Canada installed or modernized from the late 1990s onwards usually use a sixteen segment display and show the digit 7 in a manner more similar to that of handwriting.

While the shape of the character for the digit 7 has an ascender in most modern typefaces, in typefaces with text figures the character usually has a descender (⁊), as, for example, in .

Most people in Continental Europe,[3] Indonesia,[citation needed] and some in Britain, Ireland, and Canada, as well as Latin America, write 7 with a line through the middle (7), sometimes with the top line crooked. The line through the middle is useful to clearly differentiate the digit from the digit one, as they can appear similar when written in certain styles of handwriting. This form is used in official handwriting rules for primary school in Russia, Ukraine, Bulgaria, Poland, other Slavic countries,[4] France,[5] Italy, Belgium, the Netherlands, Finland,[6] Romania, Germany, Greece,[7] and Hungary.[citation needed]

In mathematics

Seven, the fourth prime number, is not only a Mersenne prime (since ) but also a double Mersenne prime since the exponent, 3, is itself a Mersenne prime.[8] It is also a Newman–Shanks–Williams prime,[9] a Woodall prime,[10] a factorial prime,[11] a Harshad number, a lucky prime,[12] a happy number (happy prime),[13] a safe prime (the only Mersenne safe prime), a Leyland number of the second kind[14] and Leyland prime of the second kind[15] (), and the fourth Heegner number.[16] Seven is the lowest natural number that cannot be represented as the sum of the squares of three integers.

A seven-sided shape is a heptagon.[17] The regular n-gons for n ⩽ 6 can be constructed by compass and straightedge alone, which makes the heptagon the first regular polygon that cannot be directly constructed with these simple tools.[18]

7 is the only number D for which the equation 2nD = x2 has more than two solutions for n and x natural. In particular, the equation 2n − 7 = x2 is known as the Ramanujan–Nagell equation. 7 is one of seven numbers in the positive definite quadratic integer matrix representative of all odd numbers: {1, 3, 5, 7, 11, 15, 33}.[19][20]

There are 7 frieze groups in two dimensions, consisting of symmetries of the plane whose group of translations is isomorphic to the group of integers.[21] These are related to the 17 wallpaper groups whose transformations and isometries repeat two-dimensional patterns in the plane.[22][23]

A heptagon in Euclidean space is unable to generate uniform tilings alongside other polygons, like the regular pentagon. However, it is one of fourteen polygons that can fill a plane-vertex tiling, in its case only alongside a regular triangle and a 42-sided polygon (3.7.42).[24][25] This is also one of twenty-one such configurations from seventeen combinations of polygons, that features the largest and smallest polygons possible.[26][27] Otherwise, for any regular n-sided polygon, the maximum number of intersecting diagonals (other than through its center) is at most 7.[28]

In two dimensions, there are precisely seven 7-uniform Krotenheerdt tilings, with no other such k-uniform tilings for k > 7, and it is also the only k for which the count of Krotenheerdt tilings agrees with k.[29][30]

The Fano plane, the smallest possible finite projective plane, has 7 points and 7 lines arranged such that every line contains 3 points and 3 lines cross every point.[31] This is related to other appearances of the number seven in relation to exceptional objects, like the fact that the octonions contain seven distinct square roots of −1, seven-dimensional vectors have a cross product, and the number of equiangular lines possible in seven-dimensional space is anomalously large.[32][33][34]

Graph of the probability distribution of the sum of two six-sided dice

The lowest known dimension for an exotic sphere is the seventh dimension.[35][36]

In hyperbolic space, 7 is the highest dimension for non-simplex hypercompact Vinberg polytopes of rank n + 4 mirrors, where there is one unique figure with eleven facets. On the other hand, such figures with rank n + 3 mirrors exist in dimensions 4, 5, 6 and 8; not in 7.[37]

There are seven fundamental types of catastrophes.[38]

When rolling two standard six-sided dice, seven has a 1 in 6 probability of being rolled, the greatest of any number.[39] The opposite sides of a standard six-sided die always add to 7.

The Millennium Prize Problems are seven problems in mathematics that were stated by the Clay Mathematics Institute in 2000.[40] Currently, six of the problems remain unsolved.[41]

Basic calculations

Multiplication 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 50 100 1000
7 × x 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140 147 154 161 168 175 350 700 7000
Division 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
7 ÷ x 7 3.5 2.3 1.75 1.4 1.16 1 0.875 0.7 0.7 0.63 0.583 0.538461 0.5 0.46
x ÷ 7 0.142857 0.285714 0.428571 0.571428 0.714285 0.857142 1.142857 1.285714 1.428571 1.571428 1.714285 1.857142 2 2.142857
Exponentiation 1 2 3 4 5 6 7 8 9 10 11 12 13
7x 7 49 343 2401 16807 117649 823543 5764801 40353607 282475249 1977326743 13841287201 96889010407
x7 1 128 2187 16384 78125 279936 823543 2097152 4782969 10000000 19487171 35831808 62748517

Decimal calculations

999,999 divided by 7 is exactly 142,857. Therefore, when a vulgar fraction with 7 in the denominator is converted to a decimal expansion, the result has the same six-digit repeating sequence after the decimal point, but the sequence can start with any of those six digits.[42] In decimal representation, the reciprocal of 7 repeats six digits (as 0.142857),[43][44] whose sum when cycling back to 1 is equal to 28.

In science

In psychology

Classical antiquity

The Pythagoreans invested particular numbers with unique spiritual properties. The number seven was considered to be particularly interesting because it consisted of the union of the physical (number 4) with the spiritual (number 3).[48] In Pythagorean numerology the number 7 means spirituality.

Culture

The number seven had mystical and religious significance in Mesopotamian culture by the 22nd century BCE at the latest. This was likely because in the Sumerian sexagesimal number system, dividing by seven was the first division which resulted in infinitely repeating fractions.[49]

See also

Notes

  1. ^ Carl B. Boyer, A History of Mathematics (1968) p.52, 2nd edn.
  2. ^ Georges Ifrah, The Universal History of Numbers: From Prehistory to the Invention of the Computer transl. David Bellos et al. London: The Harvill Press (1998): 395, Fig. 24.67
  3. ^ Eeva Törmänen (September 8, 2011). "Aamulehti: Opetushallitus harkitsee numero 7 viivan palauttamista". Tekniikka & Talous (in Finnish). Archived from the original on September 17, 2011. Retrieved September 9, 2011.
  4. ^ "Education writing numerals in grade 1." Archived 2008-10-02 at the Wayback Machine(Russian)
  5. ^ "Example of teaching materials for pre-schoolers"(French)
  6. ^ Elli Harju (August 6, 2015). ""Nenosen seiska" teki paluun: Tiesitkö, mistä poikkiviiva on peräisin?". Iltalehti (in Finnish).
  7. ^ "Μαθηματικά Α' Δημοτικού" [Mathematics for the First Grade] (PDF) (in Greek). Ministry of Education, Research, and Religions. p. 33. Retrieved May 7, 2018.
  8. ^ Weisstein, Eric W. "Double Mersenne Number". mathworld.wolfram.com. Retrieved 2020-08-06.
  9. ^ "Sloane's A088165 : NSW primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-01.
  10. ^ "Sloane's A050918 : Woodall primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-01.
  11. ^ "Sloane's A088054 : Factorial primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-01.
  12. ^ "Sloane's A031157 : Numbers that are both lucky and prime". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-01.
  13. ^ "Sloane's A035497 : Happy primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-01.
  14. ^ Sloane, N. J. A. (ed.). "Sequence A045575 (Leyland numbers of the second kind)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  15. ^ Sloane, N. J. A. (ed.). "Sequence A123206 (Leyland prime numbers of the second kind)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  16. ^ "Sloane's A003173 : Heegner numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-01.
  17. ^ Weisstein, Eric W. "Heptagon". mathworld.wolfram.com. Retrieved 2020-08-25.
  18. ^ Weisstein, Eric W. "7". mathworld.wolfram.com. Retrieved 2020-08-07.
  19. ^ Cohen, Henri (2007). "Consequences of the Hasse–Minkowski Theorem". Number Theory Volume I: Tools and Diophantine Equations. Graduate Texts in Mathematics. Vol. 239 (1st ed.). Springer. pp. 312–314. doi:10.1007/978-0-387-49923-9. ISBN 978-0-387-49922-2. OCLC 493636622. Zbl 1119.11001.
  20. ^ Sloane, N. J. A. (ed.). "Sequence A116582 (Numbers from Bhargava's 33 theorem.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-02-03.
  21. ^ Heyden, Anders; Sparr, Gunnar; Nielsen, Mads; Johansen, Peter (2003-08-02). Computer Vision – ECCV 2002: 7th European Conference on Computer Vision, Copenhagen, Denmark, May 28–31, 2002. Proceedings. Part II. Springer. p. 661. ISBN 978-3-540-47967-3. A frieze pattern can be classified into one of the 7 frieze groups...
  22. ^ Grünbaum, Branko; Shephard, G. C. (1987). "Section 1.4 Symmetry Groups of Tilings". Tilings and Patterns. New York: W. H. Freeman and Company. pp. 40–45. doi:10.2307/2323457. ISBN 0-7167-1193-1. JSTOR 2323457. OCLC 13092426. S2CID 119730123.
  23. ^ Sloane, N. J. A. (ed.). "Sequence A004029 (Number of n-dimensional space groups.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-01-30.
  24. ^ Grünbaum, Branko; Shepard, Geoffrey (November 1977). "Tilings by Regular Polygons" (PDF). Mathematics Magazine. 50 (5). Taylor & Francis, Ltd.: 231. doi:10.2307/2689529. JSTOR 2689529. S2CID 123776612. Zbl 0385.51006.
  25. ^ Jardine, Kevin. "Shield - a 3.7.42 tiling". Imperfect Congruence. Retrieved 2023-01-09. 3.7.42 as a unit facet in an irregular tiling.
  26. ^ Grünbaum, Branko; Shepard, Geoffrey (November 1977). "Tilings by Regular Polygons" (PDF). Mathematics Magazine. 50 (5). Taylor & Francis, Ltd.: 229–230. doi:10.2307/2689529. JSTOR 2689529. S2CID 123776612. Zbl 0385.51006.
  27. ^ Dallas, Elmslie William (1855). "Part II. (VII): Of the Circle, with its Inscribed and Circumscribed Figures − Equal Division and the Construction of Polygons". The Elements of Plane Practical Geometry. London: John W. Parker & Son, West Strand. p. 134.
    "...It will thus be found that, including the employment of the same figures, there are seventeen different combinations of regular polygons by which this may be effected; namely, —
    When three polygons are employed, there are ten ways; viz., 6,6,63.7.423,8,243,9,183,10,153,12,124,5,204,6,124,8,85,5,10.
    With four polygons there are four ways, viz., 4,4,4,43,3,4,123,3,6,63,4,4,6.
    With five polygons there are two ways, viz., 3,3,3,4,43,3,3,3,6.
    With six polygons one way — all equilateral triangles [ 3.3.3.3.3.3 ]."
    Note: the only four other configurations from the same combinations of polygons are: 3.4.3.12, (3.6)2, 3.4.6.4, and 3.3.4.3.4.
  28. ^ Poonen, Bjorn; Rubinstein, Michael (1998). "The Number of Intersection Points Made by the Diagonals of a Regular Polygon" (PDF). SIAM Journal on Discrete Mathematics. 11 (1). Philadelphia: Society for Industrial and Applied Mathematics: 135–156. arXiv:math/9508209. doi:10.1137/S0895480195281246. MR 1612877. S2CID 8673508. Zbl 0913.51005.
  29. ^ Sloane, N. J. A. (ed.). "Sequence A068600 (Number of n-uniform tilings having n different arrangements of polygons about their vertices.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-01-09.
  30. ^ Grünbaum, Branko; Shepard, Geoffrey (November 1977). "Tilings by Regular Polygons" (PDF). Mathematics Magazine. 50 (5). Taylor & Francis, Ltd.: 236. doi:10.2307/2689529. JSTOR 2689529. S2CID 123776612. Zbl 0385.51006.
  31. ^ Pisanski, Tomaž; Servatius, Brigitte (2013). "Section 1.1: Hexagrammum Mysticum". Configurations from a Graphical Viewpoint. Birkhäuser Advanced Texts (1 ed.). Boston, MA: Birkhäuser. pp. 5–6. doi:10.1007/978-0-8176-8364-1. ISBN 978-0-8176-8363-4. OCLC 811773514. Zbl 1277.05001.
  32. ^ Massey, William S. (December 1983). "Cross products of vectors in higher dimensional Euclidean spaces" (PDF). The American Mathematical Monthly. 90 (10). Taylor & Francis, Ltd: 697–701. doi:10.2307/2323537. JSTOR 2323537. S2CID 43318100. Zbl 0532.55011. Archived from the original (PDF) on 2021-02-26. Retrieved 2023-02-23.
  33. ^ Baez, John C. (2002). "The Octonions". Bulletin of the American Mathematical Society. 39 (2). American Mathematical Society: 152–153. doi:10.1090/S0273-0979-01-00934-X. MR 1886087. S2CID 586512.
  34. ^ Stacey, Blake C. (2021). A First Course in the Sporadic SICs. Cham, Switzerland: Springer. pp. 2–4. ISBN 978-3-030-76104-2. OCLC 1253477267.
  35. ^ Behrens, M.; Hill, M.; Hopkins, M. J.; Mahowald, M. (2020). "Detecting exotic spheres in low dimensions using coker J". Journal of the London Mathematical Society. 101 (3). London Mathematical Society: 1173. arXiv:1708.06854. doi:10.1112/jlms.12301. MR 4111938. S2CID 119170255. Zbl 1460.55017.
  36. ^ Sloane, N. J. A. (ed.). "Sequence A001676 (Number of h-cobordism classes of smooth homotopy n-spheres.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-02-23.
  37. ^ Tumarkin, Pavel; Felikson, Anna (2008). "On d-dimensional compact hyperbolic Coxeter polytopes with d + 4 facets" (PDF). Transactions of the Moscow Mathematical Society. 69. Providence, R.I.: American Mathematical Society (Translation): 105–151. doi:10.1090/S0077-1554-08-00172-6. MR 2549446. S2CID 37141102. Zbl 1208.52012.
  38. ^ Antoni, F. de; Lauro, N.; Rizzi, A. (2012-12-06). COMPSTAT: Proceedings in Computational Statistics, 7th Symposium held in Rome 1986. Springer Science & Business Media. p. 13. ISBN 978-3-642-46890-2. ...every catastrophe can be composed from the set of so called elementary catastrophes, which are of seven fundamental types.
  39. ^ Weisstein, Eric W. "Dice". mathworld.wolfram.com. Retrieved 2020-08-25.
  40. ^ "Millennium Problems | Clay Mathematics Institute". www.claymath.org. Retrieved 2020-08-25.
  41. ^ "Poincaré Conjecture | Clay Mathematics Institute". 2013-12-15. Archived from the original on 2013-12-15. Retrieved 2020-08-25.
  42. ^ Bryan Bunch, The Kingdom of Infinite Number. New York: W. H. Freeman & Company (2000): 82
  43. ^ Wells, D. (1987). The Penguin Dictionary of Curious and Interesting Numbers. London: Penguin Books. pp. 171–174. ISBN 0-14-008029-5. OCLC 39262447. S2CID 118329153.
  44. ^ Sloane, N. J. A. (ed.). "Sequence A060283 (Periodic part of decimal expansion of reciprocal of n-th prime (leading 0's moved to end).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-04-02.
  45. ^ Gonzalez, Robbie (4 December 2014). "Why Do People Love The Number Seven?". Gizmodo. Retrieved 20 February 2022.
  46. ^ Bellos, Alex. "The World's Most Popular Numbers [Excerpt]". Scientific American. Retrieved 20 February 2022.
  47. ^ Kubovy, Michael; Psotka, Joseph (May 1976). "The predominance of seven and the apparent spontaneity of numerical choices". Journal of Experimental Psychology: Human Perception and Performance. 2 (2): 291–294. doi:10.1037/0096-1523.2.2.291. Retrieved 20 February 2022.
  48. ^ "Number symbolism – 7".
  49. ^ The Origin of the Mystical Number Seven in Mesopotamian Culture: Division by Seven in the Sexagesimal Number System

References

Read other articles:

Partai National Sosialis beralih ke halaman ini. Untuk kegunaan lain, lihat Partai National Sosialis (disambiguasi). Partai Buruh Nasional-Sosialis Jerman Nationalsozialistische Deutsche ArbeiterparteiLambang Partai NaziSingkatanNSDAPKetua umumKarl Harrer (1919–1920)Anton Drexler (1920–1921)Adolf Hitler (1921–1945)Martin Bormann (1945)PendiriAnton DrexlerDibentuk1920 (1920)Dibubarkan1945 (1945)Didahului olehPartai Pekerja Jerman (DAP)Diteruskan olehTidak ada (dilaran...

 

 

Jalan Tol Pekanbaru-Dumai(Permai)Informasi ruteDikelola oleh PT Hutama Karya (Persero)Panjang:131.48 km (81,70 mi)Berdiri:25 September 2020; 3 tahun lalu (2020-09-25) – sekarangPersimpangan besarUjung Selatan:Pekanbaru Simpang Susun Minas JunctionSimpang Susun Kandis SelatanSimpang Susun Kandis UtaraSimpang Susun PinggirSimpang Susun Dumai JunctionSimpang Susun Bathin SolaphanUjung Utara:DumaiLetakKota besar:PekanbaruSiakBengkalisDumaiSistem jalan bebas hambatanAH 2...

 

 

Об экономическом термине см. Первородный грех (экономика). ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Ран�...

العلاقات الإستونية الليختنشتانية إستونيا ليختنشتاين   إستونيا   ليختنشتاين تعديل مصدري - تعديل   العلاقات الإستونية الليختنشتانية هي العلاقات الثنائية التي تجمع بين إستونيا وليختنشتاين.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجع...

 

 

31st Fighter Wing Création 6 novembre 1947 Pays États-Unis Allégeance USAFE Type chasse Fait partie de 16th Air Force Garnison Aviano Air Base Équipement F-16C/D modifier  Le 31st Fighter Wing (31st FW, 31e Escadre de chasse), est une unité de chasse de l'United States Air Forces in Europe basée à Aviano Air Base en Italie. Organisation en novembre 2006 31st Operations Group 510th Fighter Squadron Buzzards sur F-16C/D 555th Fighter Squadron Triple Nicke sur F-16C/D 603rd Air Cont...

 

 

Jean Michel Jarre Jean-Michel André Jarre (lahir 24 Agustus 1948) merupakan seorang penyanyi dan komponis berkebangsaan Prancis. Dia dikenal dengan nama Jean-Michel Jarre. Dilahirkan di Lyon. Dia berkarier di dunia musik sejak tahun 1971. Diskografi Deserted Palace (1972) Oxygène (1976) Equinoxe (1978) Magnetic Fields (Les Chants Magnétiques) (1981) The Concerts in China (Les Concerts en Chine) (1982) Music for Supermarkets (Musique pour Supermarché) (1983) Zoolook (1984) Rendez-Vous (198...

Duta Besar Duta besar Amerika Serikat untuk AfganistanSegel Kementerian Dalam Negeri Amerika SerikatPetahanaJohn R. Basssejak 12 Desember 2017Dicalonkan olehPresiden Amerika SerikatDitunjuk olehPresidendengan nasehat SenatPejabat perdanaWilliam H. Hornibrooksebagai Duta Luar Biasa dan Menteri Berkuasa PenuhDibentuk4 Mei 1935Situs webaf.usembassy.gov Kedubes AS di Kabul, 2010 Duta Besar Amerika Serikat untuk Afganistan adalah perwakilan resmi Presiden Amerika Serikat untuk kepala negara A...

 

 

English naturalist and biologist (1809–1882) For other people named Charles Darwin, see Charles Darwin (disambiguation). Charles DarwinFRS FRGS FLS FZS JPDarwin, c. 1854, when he was preparing On the Origin of Species[4]BornCharles Robert Darwin(1809-02-12)12 February 1809Shrewsbury, EnglandDied19 April 1882(1882-04-19) (aged 73)Down, Kent, EnglandResting placeWestminster AbbeyAlma materUniversity of Edinburgh Christ's College, Cambridge (BA, 1831; MA, 1836...

 

 

Chinchiná, CaldasKotamadya BenderaLambangChinchiná, CaldasKoordinat: 4°58′57″N 75°36′13″W / 4.98250°N 75.60361°W / 4.98250; -75.60361Koordinat: 4°58′57″N 75°36′13″W / 4.98250°N 75.60361°W / 4.98250; -75.60361Pemerintahan • MayorEduardo Andrés Grisales LópezPopulasi (2018 census) • Total51.271Zona waktuUTC-5 (Colombia Standard Time)Situs webOfficial website (dalam bahasa Spanyol) ...

Nation with a lower living standard relative to more developed countries   Developed countries or cities   Developing countries   Least developed countries   Data unavailableThe latest classifications sorted by the IMF[1] and the UN[2] World map representing Human Development Index categories (based on 2022 data, published in 2024)  Very high  High  Medium  Low  No data A developing count...

 

 

Chemical compound MilrinoneClinical dataAHFS/Drugs.comMonographMedlinePlusa601020Routes ofadministrationIV onlyATC codeC01CE02 (WHO) Legal statusLegal status EU: Rx-only[1] In general: ℞ (Prescription only) Pharmacokinetic dataBioavailability100% (as IV bolus, infusion)Protein binding70 to 80%MetabolismLiver (12%)Elimination half-life2.3 hours (mean, in CHF)ExcretionUrine (85% as unchanged drug) within 24 hoursIdentifiers IUPAC name 2-Methyl-6-oxo-1,6-dihydr...

 

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ballonet – news · newspapers · books · scholar · JSTOR (May 2021) (Learn how and when to remove this message) Air-filled bags inside the envelope of an airship The air-filled red balloon acts as a simple ballonet inside the outer balloon, which is filled with l...

Swedish high jumper This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Stefan Holm – news · newspapers · books · scholar · JSTOR (September 2009) (Learn how and when to remove this message) Stefan ...

 

 

Kondrit O NWA 869. Kondrit O (bahasa Inggris: ordinary chondrites) adalah kelompok meteorit kondritik. Kelompok ini merupakan kelompok yang paling umum ditemui dan meliputi 87% dari meteorit yang ditemukan.[1] Etimologi O merupakan singkatan dari ordinary, yang dalam bahasa Inggris berarti biasa. Kondrit ini disebut biasa karena merupakan jenis kondrit yang paling umum. Komposisi Kondrit biasa terdiri dari tiga kelompok yang komposisi mineral dan kimianya berbeda: Kondrit H Kondri...

 

 

Professional sports league founded 1987 This article is about the basketball governing body. Not to be confused with their senior elite competition, the BBL Championship. Basketball leagueBritish Basketball LeagueFounded1987; 37 years ago (1987)First season1987–88CountryGreat BritainFederationBritish BasketballConfederationFIBA Europe (Europe)Number of teams10Level on pyramid1Domestic cup(s)BBL TrophyBBL Cup (defunct)International cup(s)EuroCupChampions LeagueFIBA Europe C...

County in Oregon, United States County in OregonWashington CountyCounty From top, left to right: Washington County courthouse, Meier Road Barn, a canola field in rural Washington County SealLocation within the U.S. state of OregonOregon's location within the U.S.Coordinates: 45°34′N 123°05′W / 45.56°N 123.09°W / 45.56; -123.09Country United StatesState OregonFoundedJuly 5, 1843 (as Twality District)Named forGeorge WashingtonSeatHillsboroLargest cityHi...

 

 

American basketball player and coach Lou CarneseccaBiographical detailsBorn (1925-01-05) January 5, 1925 (age 99)New York City, New York, U.S.Alma materSt. John's ('50)Coaching career (HC unless noted)1950–1958St. Ann's Academy HS1958–1965St. John's (assistant)1965–1970St. John's1970–1973New York Nets1973–1992St. John's Head coaching recordOverall205–34 (high school)526–200 (college)114–138 (ABA)Tournaments17–20 (NCAA Division I)10–6 (NIT)Accomplishments and hono...

 

 

Giuseppe Meda (1534 – 1599) è stato un pittore, architetto e ingegnere italiano. G. Meda: David danza davanti all'arca (anta dell'organo del Duomo di Milano) G. Meda e G. Arcimboldo: L'albero di Jesse di Cristo transetto meridionale del Duomo di Monza) Indice 1 Biografia 2 Cronologia 3 Bibliografia 4 Altri progetti 5 Collegamenti esterni Biografia Giuseppe Lomazzo, meglio noto come Giuseppe Meda, all'apprendistato artistico con Bernardino Campi unì subito una formazione più tecnica basat...

В статье не хватает ссылок на источники (см. рекомендации по поиску). Информация должна быть проверяема, иначе она может быть удалена. Вы можете отредактировать статью, добавив ссылки на авторитетные источники в виде сносок. (20 октября 2022) Евгений Первышов Глава города Кра...

 

 

チベットの旗(雪山獅子旗) チベット独立運動の象徴としてよく用いられる。20世紀初頭にダライ・ラマ13世によって導入され、現在はインド亡命中のチベット政府によって使用されている。 チベット独立運動(チベットどくりつうんどう)は、近代東アジアにおいて、中国によって主張・実行されたチベットの一部または全域の支配・統治に対する抵抗運動、独立運�...