سميت هذه الأعداد هكذا نسبة لمارين ميرسين وهو راهب فرنسي بدأ دراستها في بداية القرن السابع عشر. بعض التعريفات لأعداد ميرسين تشترط في الأس p أن يكون أوليا، بما أنه إذا كان p عددا مؤلفا فإن العدد يكون مؤلفا أيضا.
يُتطرق إلى أعداد ميرسن الأولية نظرا لارتباطها بالأعداد المثالية.
من المعلوم أنه إذا كان عددا أوليا فإن p هو عدد أولي أيضا. أصغر عدد لميرسن مؤلفٍ رغم كون الأس أوليا هو 211 − 1 = 2047 = 23 × 89
يبقى عدد من المسائل المتعلقة بأعداد ميرسن الأولية غير محلحلا بعد. لا يُعلم هل عدد أعداد ميرسن الأولية منته أم غير منته. حدسية لينسترا-بوميرانس-فاغشتاف تنص على أن هناك عددا غير منته من أعداد ميرسن الأولية كما تتنبأ بوتيرة نُموهن. أيضا، لا يُعلم عدد الحالات حيث يكون الأس أوليا وعدد ميرسن ذاته غير أولي.انظر إلى عدد صوفي جيرمين الأولي.
ليس هناك اختبار بسيط يمكن من الجزم أن عددا ما لميرسين أولي أو غير أولي. هذا يجعل من البحث عن أعداد ميرسن الأولية أمرا صعبا وخصوصا أن أعداد ميرسن تنمو بشكل سريع جدا. اختبار لوكاس-ليهمر لأولية عدد ما هو طريقة فعالة تساعد على اختبار أولية أعداد ميرسن.
عندما يُراد القيام بحسابياتٍ بتردد عدد أولي، تصير أعداد ميرسن الأولية اختيارا رائعا وفعالا خصوصا عند استعمال الحاسوب وتمثيله الثنائي للأعداد. انظر على سبيل المثال إلى مولد ليهمر للأعداد العشوائية.
التاريخ
اعتقد عدد من الرياضيين السابقين أن العدد من الصورة يكون أوليا كلما كان n عددا أوليا، و لكن في 1536 أثبت ريجيوس ( Regius ) أن العدد : 2047 = 23.89 = ليس أوليا حيث أنه حاصل ضرب 23 و89، و في عام 1603 تحقق كاتالدي أن العددين و أوليان ، و استنتج كاتالدي و بشكل خاطئ أن العدد
يكون أوليا لكل : n = 23,29,31,37 ، حيث أثبت فيرما في 1645 أن كاتالدي كان خاطئا بالنسبة للعددين n = 23,37 ، و أثبت أويلر في 1738 أن كاتالدي كان أيضا خاطئا بالنسبة للعدد n = 29 ، و في وقت لاحق أثبت أويلر أن كاتالدي كان مصيبا بالنسبة للعدد n = 31.
بمجيء الفرنسي مارين ميرسين (1588-1648)، حيث وضع في مقدمة أحد كتبه أن العدد يكون أوليا عندما : n = 2,3,5,7,13,17,19,31,67,127,257 ، و أنه مركب لكل الأعداد n <257 الصحيحة، و رغم أن هذا التخمين من ميرسين كان خاطئا إلا أن اسمه ظل ملتصقا بهذه الأعداد حيث سميت باسمه.
كان واضحا أنه ليس بإمكان ميرسين التحقق من كل هذه الأعداد (n <257) لصعوبة ذلك في عصر ميرسين. كذلك لم يكن بمقدور معاصريه التحقق من موضوعته، فبقيت كذلك إلى مائة سنة و ذلك عندما تحقق أويلر في 1750 من أن العدد التالي في قائمة ميرسين هو ، و بعد قرن آخر و في 1876 بين إدوارد لوكاس أن العدد أولي، و بعد سبع سنوات أثبت عالم الرياضيات الروسي بيرفوشين أن العدد أولي و هذا لم يذكره ميرسين ، كذلك أثبت باورس في بداية القرن العشرين أن ميرسين أغفل أيضا العددين الأوليين و و بنهاية عام 1947 كانت سلسلة ميرسين للأعداد (n<258 ) قد اكتملت بشكلها الصحيح و هي :
(n = 2,3,5,7,13,17,19,31,61,89,107,127 ) ، أما بالنسبة لبقية أعداد ميرسين فقد تم اكتشافها مع ظهور الحاسب الحالي.
لائحة أعداد ميرسين الأولية المعروفة
اللائحة أسفله تحتوي على أعداد ميرسن الأولية المعروفة وعددهن واحد وخمسون :
^ ابجدIt is not verified whether any undiscovered Mersenne primes exist between the 47th (M43,112,609) and the 51st (M82,589,933) on this chart; the ranking is therefore provisional.
^Although M74,207,281 was first reported by a machine on September 17, 2015, no human took notice of this fact until يناير 7, 2016.
All Mersenne numbers below the 51st Mersenne prime (M82,589,933) have been tested at least once but some have not been double-checked. Primes are not always discovered in increasing order. For example, the 29th Mersenne prime was discovered after the 30th and the 31st. Similarly, M43,112,609 was followed by two smaller Mersenne primes, first 2 weeks later and then 9 months later.[59]M43,112,609 was the first discovered prime number with more than 10 million decimal digits.
منذ 1952، كانت أعداد ميرسن الأولية هن أكبر عدد أولي معروف، باستثناء بين عام 1989 و 1992.[60]
الأعداد المثالية
تكمن أهمية أعداد ميرسين الأولية في ارتباطها بالأعداد المثالية. في القرن الرابع قبل الميلاد، برهن اقليدس على أنه إذا كان Mp عددا أوليا لميرسن، فإن
هو عدد مثالي زوجي. في القرن العاشر، يبدو أن ابن الهيثم كان أول من حاول تصنيف الأعداد المثالية الزوجية على شكل ( حيث هو عدد أولي.
في القرن الثامن عشر، برهن ليونهارد أويلر على عكس هذه المبرهنة والذي ينص على أن كل عدد مثالي زوجي له هذا الشكل.
أعداد ميرسين في الطبيعة وغيرها
في معضلة برج هانوي الرياضية: حلحلة المعضلة حيث عدد الأقراص هو p تتطلب على الأقل Mp خطوة.
^There is no mentioning among the ians of prime numbers, and they did not have any concept for prime numbers known today. In the بردية ريند الرياضية (1650 BC) the Egyptian fraction expansions have fairly different forms for primes and composites, so it may be argued that they knew about prime numbers. "The Egyptians used ($) in the table above for the first primes r = 3, 5, 7, or 11 (also for r = 23). Here is another intriguing observation: That the Egyptians stopped the use of ($) at 11 suggests they understood (at least some parts of) Eratosthenes's Sieve 2000 years before Eratosthenes 'discovered' it." The Rhind 2/n Table [Retrieved 2012-11-11].
In the school of [[فيثاغورس|]] (b. about 570 – d. about 495 BC) and the فيثاغورية, we find the first sure observations of prime numbers. Hence the first two Mersenne primes, 3 and 7, were known to and may even be said to have been discovered by them. There is no reference, though, to their special form 22 − 1 and 23 − 1 as such.
The sources to the knowledge of prime numbers among the Pythagoreans are late. The Neoplatonic philosopher [[يامبليخوس|]], AD c. 245–c. 325, states that the Greek Platonic philosopher [[إسبوزيبوس|]], c. 408 – 339/8 BC, wrote a book named On Pythagorean Numbers. According to Iamblichus this book was based on the works of the Pythagorean [[فيلولاوس|]], c. 470–c. 385 BC, who lived a century after [[فيثاغورس|]], 570 – c. 495 BC. In his Theology of Arithmetic in the chapter On the Decad, Iamblichus writes: "Speusippus, the son of Plato's sister Potone, and head of the Academy before Xenocrates, compiled a polished little book from the Pythagorean writings which were particularly valued at any time, and especially from the writings of Philolaus; he entitled the book On Pythagorean Numbers. In the first half of the book, he elegantly expounds linear numbers [that is, prime numbers], polygonal numbers and all sorts of plane numbers, solid numbers and the five figures which are assigned to the elements of the universe, discussing both their individual attributes and their shared features, and their proportionality and reciprocity." Iamblichus The Theology of Arithmetic translated by Robin Waterfiled, 1988, p. 112f. [Retrieved 2012-11-11].
[[يامبليخوس|]] also gives us a direct quote from [[إسبوزيبوس|]]' book where [[إسبوزيبوس|]] among other things writes: "Secondly, it is necessary for a perfect number [the concept "perfect number" is not used here in a modern sense] to contain an equal amount of prime and incomposite numbers, and secondary and composite numbers." Iamblichus The Theology of Arithmetic translated by Robin Waterfiled, 1988, p. 113. [Retrieved 2012-11-11]. For the Greek original text, see Speusippus of Athens: A Critical Study with a Collection of the Related Texts and Commentary by Leonardo Tarán, 1981, p. 140 line 21–22 [Retrieved 2012-11-11]
In his comments to نيقوماخس الجرشي [[مقدمة في الحساب|]]، [[يامبليخوس|]] also mentions that Thymaridas, ca. 400 BC – ca. 350 BC, uses the term rectilinear for prime numbers, and that [[ثاون الأزميري|]], fl. AD 100, uses euthymetric and linear as alternative terms. Nicomachus of Gerasa, Introduction to Arithmetic, 1926, p. 127 [Retrieved 2012-11-11] It is unclear though when this said Thymaridas lived. "In a highly suspect passage in Iamblichus, Thymaridas is listed as a pupil of Pythagoras himself." Pythagoreanism [Retrieved 2012-11-11]
Before [[فيلولاوس|]], c. 470–c. 385 BC, we have no proof of any knowledge of prime numbers. "نسخة مؤرشفة". مؤرشف من الأصل في 2019-12-01. اطلع عليه بتاريخ 2020-06-07.{{استشهاد ويب}}: صيانة الاستشهاد: BOT: original URL status unknown (link)
^We find the oldest (undisputed) note of the result in Codex nr. 14908, which origins from Bibliotheca monasterii ord. S. Benedicti ad S. Emmeramum Ratisbonensis now in the archive of the Bayerische Staatsbibliothek, see "Halm, Karl / Laubmann, Georg von / Meyer, Wilhelm: Catalogus codicum latinorum Bibliothecae Regiae Monacensis, Bd.: 2,2, Monachii, 1876, p. 250". [retrieved on 2012-09-17] The Codex nr. 14908 consists of 10 different medieval works on mathematics and related subjects. The authors of most of these writings are known. Some authors consider the monk Fridericus Gerhart (Amman), 1400–1465 (Frater Fridericus Gerhart monachus ordinis sancti Benedicti astrologus professus in monasterio sancti Emmerani diocesis Ratisponensis et in ciuitate eiusdem) to be the author of the part where the prime number 8191 is mentioned. Geschichte Der Mathematik [retrieved on 2012-09-17] The second manuscript of Codex nr. 14908 has the name "Regulae et exempla arithmetica, algebraica, geometrica" and the 5th perfect number and all is factors, including 8191, are mentioned on folio no. 34 a tergo (backside of p. 34). Parts of the manuscript have been published in Archiv der Mathematik und Physik, 13 (1895), pp. 388–406 [retrieved on 2012-09-23] "نسخة مؤرشفة". مؤرشف من الأصل في 2019-01-02. اطلع عليه بتاريخ 2020-06-07.{{استشهاد ويب}}: صيانة الاستشهاد: BOT: original URL status unknown (link)
^"A i lettori. Nel trattato de' numeri perfetti, che giàfino dell anno 1588 composi, oltrache se era passato auáti à trouarne molti auertite molte cose, se era anco amplamente dilatatala Tauola de' numeri composti , di ciascuno de' quali si vedeano per ordine li componenti, onde preposto unnum." p. 1 in Trattato de' nvumeri perfetti Di Pietro Antonio Cataldo 1603. http://fermi.imss.fi.it/rd/bdv?/bdviewer@selid=1373775#[وصلة مكسورة]"نسخة مؤرشفة". مؤرشف من الأصل في 2017-07-08. اطلع عليه بتاريخ 2021-01-24.{{استشهاد ويب}}: صيانة الاستشهاد: BOT: original URL status unknown (link)
^“En نوفمبر de l’année 1883, dans la correspondance de notre Académie se trouve une communication qui contient l’assertion que le nombre
261 − 1 = 2305843009213693951
est un nombre premier. /…/ Le tome XLVIII des Mémoires Russes de l’Académie /…/ contient le compte-rendu de la séance du 20 décembre 1883, dans lequel l’objet de la communication du père Pervouchine est indiqué avec précision.” Bulletin de l'Académie Impériale des Sciences de St.-Pétersbourg, s. 3, v. 31, 1887, cols. 532–533. https://www.biodiversitylibrary.org/item/107789#page/277/mode/1up [retrieved 2012-09-17]
See also Mélanges mathématiques et astronomiques tirés du Bulletin de l’Académie impériale des sciences de St.-Pétersbourg v. 6 (1881–1888), pp. 553–554.
See also Mémoires de l'Académie impériale des sciences de St.-Pétersbourg: Sciences mathématiques, physiques et naturelles, vol. 48
نسخة محفوظة 2018-12-12 على موقع واي باك مشين.
^Powers، R. E. (1 يناير 1911). "The Tenth Perfect Number". The American Mathematical Monthly. ج. 18 ع. 11: 195–197. DOI:10.2307/2972574. JSTOR:2972574.
^"M. E. Fauquenbergue a trouvé ses résultats depuis Février, et j’en ai reçu communication le 7 Juin; M. Powers a envoyé le 1er Juin un cablógramme à M. Bromwich[لغات أخرى] [secretary of London Mathematical Society] pour M107. Sur ma demande, ces deux auteurs m’ont adressé leurs remarquables résultats, et je m’empresse de les publier dans nos colonnes, avec nos felicitations." p. 103, André Gérardin, Nombres de Mersenne pp. 85, 103–108 in Sphinx-Œdipe. [Journal mensuel de la curiosité, de concours & de mathématiques.] v. 9, No. 1, 1914.
^ ابA. Hurwitz and J. L. Selfridge, Fermat numbers and perfect numbers, Notices of the American Mathematical Society, v. 8, 1961, p. 601, abstract 587-104.
^"On the evening of March 4, 1971, a zero Lucas-Lehmer residue for p = p24 = 19937 was found. Hence, M19937 is the 24th Mersenne prime." Bryant Tuckerman, The 24th Mersenne Prime, Proceedings of the National Academy of Sciences of the United States of America, vol. 68:10 (1971), pp. 2319–2320, http://www.pnas.org/content/68/10/2319.full.pdf [Retrieved 2012-09-18] نسخة محفوظة 2015-09-24 على موقع واي باك مشين.
^David Slowinski, "Searching for the 27th Mersenne Prime", Journal of Recreational Mathematics, v. 11(4), 1978–79, pp. 258–261, MR 80g #10013
^"The 27th Mersenne prime. It has 13395 digits and equals 244497 – 1. [...] Its primeness was determined on April 8, 1979 using the Lucas–Lehmer test. The test was programmed on a CRAY-1 computer by David Slowinski & Harry Nelson." (p. 15) "The result was that after applying the Lucas–Lehmer test to about a thousand numbers, the code determined, on Sunday, April 8th, that 244497 − 1 is, in fact, the 27th Mersenne prime." (p. 17), David Slowinski, "Searching for the 27th Mersenne Prime", Cray Channels, vol. 4, no. 1, (1982), pp. 15–17.
^"An FFT containing 8192 complex elements, which was the minimum size required to test M110503, ran approximately 11 minutes on the SX-2. The discovery of M110503 (يناير 29, 1988) has been confirmed." W. N. Colquitt and L. Welsh, Jr., A New Mersenne Prime, Mathematics of Computation, vol. 56, No. 194 (April 1991), pp. 867–870, http://www.ams.org/journals/mcom/1991-56-194/S0025-5718-1991-1068823-9/S0025-5718-1991-1068823-9.pdf [Retrieved 2012-09-18] نسخة محفوظة 2018-10-01 على موقع واي باك مشين.
^"On April 12th [2009], the 47th known Mersenne prime, 242,643,801 – 1, a 12,837,064 digit number was found by Odd Magnar Strindmo from Melhus, Norway! This prime is the second largest known prime number, a "mere" 141,125 digits smaller than the Mersenne prime found last August.", The List of Largest Known Primes Home Page, http://primes.utm.edu/primes/page.php?id=88847 [retrieved 2012-09-18] نسخة محفوظة 2018-12-12 على موقع واي باك مشين.