Dalam matematika, polilogaritma (juga dikenal sebagai fungsi Jonquière, untuk Alfred Jonquière) adalah fungsi khusus Lis(z) dengan orde s dan argumen z. Hanya untuk nilai-nilai khusus s, polilogaritma direduksi menjadi fungsi dasar seperti logaritma natural atau fungsi rasional. Dalam statistika kuantum, fungsi polilogaritma muncul sebagai bentuk tertutup integral dari distribusi Fermi–Dirac dan distribusi Bose–Einstein, dan juga dikenal sebagai integral Fermi–Dirac atau integral Bose–Einstein. Dalam elektrodinamika kuantum, polilogaritma dengan orde bilangan bulat positif muncul dalam kalkulasi proses yang direpresentasikan oleh diagram Feynman orde lebih tinggi.
Referensi
Abel, N.H. (1881) [1826]. "Note sur la fonction "(PDF). Dalam Sylow, L.; Lie, S. (ed.). Œuvres complètes de Niels Henrik Abel − Nouvelle édition, Tome II (dalam bahasa Prancis). Christiania [Oslo]: Grøndahl & Søn. hlm. 189–193. (this 1826 manuscript was only published posthumously.)
Borwein, J.M.; Bradley, D.M.; Broadhurst, D.J.; Lisonek, P. (2001). "Special Values of Multiple Polylogarithms". Transactions of the American Mathematical Society. 353 (3): 907–941. arXiv:math/9910045. doi:10.1090/S0002-9947-00-02616-7. S2CID11373360.
Broadhurst, D.J. (April 21, 1996). "On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory". arΧiv:hep-th/9604128.
Guillera, J.; Sondow, J. (2008). "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent". The Ramanujan Journal. 16 (3): 247–270. arXiv:math.NT/0506319. doi:10.1007/s11139-007-9102-0. S2CID119131640.
Nielsen, N. (1909). "Der Eulersche Dilogarithmus und seine Verallgemeinerungen. Eine Monographie". Nova Acta Leopoldina (dalam bahasa Jerman). XC (3). Halle – Leipzig, Germany: Kaiserlich-Leopoldinisch-Carolinische Deutsche Akademie der Naturforscher: 121–212. JFM40.0478.01.
Prudnikov, A.P.; Marichev, O.I.; Brychkov, Yu.A. (1990). Integrals and Series, Vol. 3: More Special Functions. Newark, NJ: Gordon and Breach. ISBN978-2-88124-682-1. (see § 1.2, "The generalized zeta function, Bernoulli polynomials, Euler polynomials, and polylogarithms", p. 23.)
Schrödinger, E. (1952). Statistical Thermodynamics (Edisi 2nd). Cambridge, UK: Cambridge University Press.
Truesdell, C. (1945). "On a function which occurs in the theory of the structure of polymers". Annals of Mathematics. Second Series. 46 (1): 144–157. doi:10.2307/1969153. JSTOR1969153.
Zagier, D. (1989). "The dilogarithm function in geometry and number theory". Number Theory and Related Topics: papers presented at the Ramanujan Colloquium, Bombay, 1988. Studies in Mathematics. Vol. 12. Bombay: Tata Institute of Fundamental Research and Oxford University Press. hlm. 231–249. ISBN0-19-562367-3. (also appeared as "The remarkable dilogarithm" in Journal of Mathematical and Physical Sciences22 (1988), pp. 131–145, and as Chapter I of (Zagier 2007).)
Zagier, D. (2007). "The Dilogarithm Function"(PDF). Dalam Cartier, P.E.; et al. (ed.). Frontiers in Number Theory, Physics, and Geometry II – On Conformal Field Theories, Discrete Groups and Renormalization. Berlin: Springer-Verlag. hlm. 3–65. ISBN978-3-540-30307-7.